一种快速预估电芯寿命衰减的方法-析锂与膨胀

百科   2024-11-16 17:20   广东  

1.背景


由于锂离子电池具有高能量密度、寿命相对较长、环境友好等优势,它的应用领域已涵盖消费类电池,动力电池,储能电池等多个领域。当负极的电位接近或小于金属锂的析出电位时,锂离子可能以锂金属的形式在负极表面析出,析出的锂金属持续生长会引发锂枝晶的形成,进而诱发内部短路带来安全风险,析出的锂金属也会与电解液缓慢反应,大大降低热失控的起始温度[1,2]。在锂离子电池各种衰减机制中,析锂被认为是最不利的因素之一,这是因为析锂现象的发生不仅会加速电池老化也会在后期的使用中埋下安全隐患。析锂现象首先与电芯的材料和设计(负极材料,负极容量与正极容量的比例,电解液的配方等)有关系。当负极材料具有的可逆平衡电位(相对于析锂电位)更高时,析锂反应不容易发生。对于负极容量与正极容量的比例,锂离子电池通常设计有过大的负极容量,以避免耗尽负极中的锂离子可插入的容量,从而减小负极过电位。如果负极材料不够,则会造成负极没有足够的空间提供给正极脱出的锂离子,从而造成析锂现象的发生;但是过量的负极则会减小电池的能量密度和功率密度,造成对电池材料的浪费和成本的增加。电解液的配方对锂离子电池析锂的影响则更为明显,因为电解液的配方直接影响了锂离子的动力学特性,在一定程度上影响了负极嵌锂的速度。析锂现象除了与电芯的材料和设计有关,还通常容易发生在低温环境、高荷电状态(SOC)、大倍率充电条件以及老化后的电池中。无论是在低温情况下、高荷电状态下、大倍率充电条件下还是伴随着负极表面不断增厚钝化膜的老化电池中,其根本原因都是负极表面的锂离子聚集速度快于锂离子扩散进入石墨内部的速度,这样会高度极化负电极,即不良的电极动力学,迫使电池负极(通常是石墨)的电势低于锂/锂离子的平衡电位,便发生了析锂现象。基于实际使用情况与工作条件对锂离子电池进行析锂测试需要很长的时间,无法满足产品开发需求,因此对锂离子电池加速检测析锂试验的研究变得十分重要而且迫切。

现有的无损在线检测析锂[3]的技术可以分为四类:①基于锂引起电芯老化的检测方法。例如:阿仑尼乌斯曲线法、库仑效率法;②基于锂引起阻抗变化的检测方法;③基于锂引起电化学反应的检测方法。例如:小电流放电法,电压弛豫法,电化学阻抗谱(EIS)法、非线性频谱响应分析法和弛豫时间分布法等;④基于锂引起电芯物理特性变化的检测方法。析锂反应在电池负极沉积的锂金属层会导致电极形态和微观结构的变化,通过原位物理方法不仅可以检测锂金属层的生长情况,还可以获得锂沉积在不同位置的分布情况。物理特性变化的检测方法包括厚度测量、声学检测等。不管哪一种检测方法,提高锂离子电池的充放电循环倍率,可以显著加速锂离子电池的容量衰减,缩短循环测试时间,是加速老化测试的有效方法。本实验通过在循环过程中间隔一定圈数的小倍率充放电测试,并实时检测锂电池的电压、容量和厚度等状态参数,得到锂离子电池电压和厚度随时间变化的曲线。由于锂电池在充电倍率达到一定范围时会产生析锂,且析锂到一定程度时会导致锂电池厚度的变化,我们尝试根据厚度差异确定锂电池的析锂程度,实现对析锂的检测,建立起锂电池厚度变化与析锂程度的关系。





2.测试信息


2.1 测试设备

原位膨胀分析仪,型号SWE2100(IEST元能科技),可施加压力范围50~10000N,可调控温度-20℃~80℃。

 图1.SWE2100膨胀设备示意图


2.2 测试参数

2.2.1 充放电流程:2C/1C充放电循环,每循环10cls,进行一次0.3C/0.3C充放电,具体流程如下:

2.2.2 电芯厚度膨胀测试将待测电芯放入设备对应通道,开启MISS软件,设置对应电芯编号,采样频率1s,测试施加压力500N等参数,软件自动读取电芯厚度、厚度变化量、测试温度、电流、电压、容量等数据。



3.测试结果分析







图2.循环容量衰减曲线


如图2所示,在常温条件下,在2C/1C充放电时放电容量仅为0.3C/0.3C充放电时的90%,主要是由于在快充过程中锂离子在电极颗粒内部的迁移速率小于其表面发生的电化学反应速率,会引起电极的浓差极化现象,使得电池因极化造成的容量损失偏大。

图3.循环充放电曲线和膨胀曲线


电芯在每快充循环10圈后进行一次0.3C充放电测试,电压和电芯厚度变化量随时间变化曲线如图3所示。随着循环的进行,满充时电芯的厚度逐渐增加,大倍率充电厚度增加量相较小倍率充电厚度增加量明显增大,这主要是由于锂离子电池在大倍率充电时,负极材料中的锂离子分布不均匀、析出在表面等因素的影响。研究表明,电极显著的体积变化与锂离子的嵌入和脱出有关,对软包电池来说,极片体积的变化可以被观测到。在适度条件下循环时,电池厚度的变化是可逆的,不会永久地增加。对于成熟的电池体系,气体逸出和热膨胀对电池厚度的影响可以忽略不计,只有锂沉积层会导致单次循环中的厚度变化。充电过程中一旦发生锂沉积,负极上的金属锂膜和随后形成的SEI膜将引起额外的膨胀与电芯厚度的不可逆变化。百分表或位移传感器通常用于单点测量。然而,在电芯上只有一个测量点是远远不够的,因为锂沉积层的发生通常是随机的且分布是不均匀的。元能科技开发的原位膨胀分析仪检测电芯整体的平均厚度,避免了测量位置对检测结论的影响,能够全方位监测整个电芯表面析锂反应引发的厚度变化。

图4.小倍率容量衰减率与膨胀率的对应关系

图4中横坐标为0.3C放电容量衰减率,纵坐标为0.3C充电的电芯厚度膨胀率,从图中拟合关系可得出,0.3C放电容量衰减率与电芯厚度膨胀率成正相关,表明在大倍率循环过程中,电池的极化较大,负极表面发生析锂,从而导致循环中间过程0.3C/0.3C充放电时容量的衰减以及电芯厚度的增加。因为在动力学受阻的情况下(如低温充放电、大倍率充放电、涂布面密度较大等),小倍率充电过程中的容量变化已基本去除极化造成的影响,所以,在不考虑材质损失的情况下,可近似把以上小倍率容量衰减率与膨胀率的对应关系看做析锂量与膨胀率的对应关系,从而可拟合出电芯整个生命周期中析锂与膨胀的对应关系,快速判断相似设计电芯在不同阶段的析锂程度。


4.总结


本文采用原位膨胀分析仪(SWE2100)对电芯循环过程中的容量和膨胀厚度进行分析,发现间隔一定圈数进行无极化小倍率充放电测试可简单量化电芯的析锂量与膨胀率的对应关系,为锂离子电池加速寿命试验的研究提供一种新思路。


5.参考文献


1.Waldmann T, Hogg B I, Wohlfahrt-Mehrens M. Li plating as unwanted side reaction in commercial Li-ion cells-A review. Journal of Power Sources, 2018, 384: 107-124.

2.Smith A J, Burns J C, Zhao X, et al. A High Precision Coulometry Study of the SEI Growth in Li/Graphite Cells. Journal of The Electrochemical Society, 2011, 158(5): A447.

3.邓林旺, 冯天宇, 舒时伟, 郭彬, 张子峰. 锂离子电池无损析锂检测研究进展. 储能科学与技术, 2023, 12(1): 263-277






言质有锂,您身边的学习好帮手!本期重点推荐下列书目,以供热爱质量及锂电行业的伙伴们学习参考。在此,预祝大家早日步入职场巅峰,成为行业顶流。











免责申明
本公众号主张和尊重原创,对于一些网上转载或编辑的经典文章会标明来源出处(无法得知原创作者的除外),文章版权归属于原作者所有。本公众号旨在知识分享及学习交流,若认为侵权则请联系小编删除。







往期精彩内容推荐


教你如何在“志言质语”号内快速获取干货?

好消息|不花钱学习六西格玛,关注他教会你!

一文搞懂最新六大工具(APQP、FMEA、MSA、SPC、PPAP、CP)。附思维导图!

干货|浅谈锂电企业的水分控制及预防

锂离子电池行业常用中英文对照汇总

锂电配料工序常见的主要异常及一般处理措施

浅析锂离子电池合浆工艺流程及品质管控

锂离子电池的常见不良失效分析系列-高内阻

锂离子电池不良失效分析系列-充高放低

锂离子电池不良失效分析系列-低容量

锂离子电池常见不良失效分析系列-低电压

锂离子电池的不良失效分析系列-厚度超标

锂离子电池不良失效分析系列-循环性能差

锂离子电池不良失效分析系列-压差大

锂离子电池的不良失效分析系列-爆炸

锂离子电池不良失效分析系列-漏液

浅谈锂电行业的工程变更管理

干货|关于锂电企业粉尘的管控及预防

聊聊锂电企业的首件三检该如何做?

六西格玛工具之相关性分析案例分享

干货|方差分析之一般线性模型(GLM)的高效应用

干货|六西格玛工具之回归分析(基于Minitab操作案例讲解)。赶紧get!

干货|残差(Residual)在方差分析(ANOVA)、回归(Regression)分析及实验设计(DOE)中的判读及异常对策

质量管理五大核心工具(APQP/FMEA/MSA/SPC/PPAP))的应用

干货|QCC活动推行方案。请收藏!

SPC改进篇:当前降本是“刚需”,过程分析和改善必不可少!

SPC理论&实战系列之实施篇

SPC理论&实战攻略系列之策划篇

SPC理论及实战攻略系列

六西格玛工具之过程能力分析(正态)

六西格工具之卡方(Chi-square)检验

六西格玛工具之MSA(测量系统分析)知识精华介绍及案例

六西格玛工具之过程能力分析(非正态)

六西格的衡量指标(尺度)

六西格玛工具之抽样大小的选择

干货|六西格(DMAIC)项目改善案例

干货|六西格玛工具之黄金版DOE驾到!

六西格玛工具之多变异图

六西格玛工具之散布图

六西格工具之图形化汇总

六西格玛工具之箱线图

六西格玛工具之鱼骨图

干货|方差分析(ANOVA)系列之平衡方差分析(完整版)

干货|方差分析(ANOVA)系列之单因子方差分析

六西格玛工具之柏拉图

六西格玛工具之正态检验

六西格玛之假设检验

干货|六西格玛工具之响应曲面设计(RSM)。请收藏!

六西格玛工具之SIPOC图

干货|新质量工具-公差区间及案例分享。请收藏!

六西格玛工具之直方图理论及Minitab案例分析详解。赶紧get!!

计数型MSA-Kappa技术的应用(Minitab案例分析详解),请收藏!

干货|正交试验设计的理论及案例分享。请收藏!

干货|六西格玛工具之等方差检验案例分享。请收藏!

干货|六西格玛50种核心工具应用及路径。请珍藏!

一种创新改进工具-标杆分析法(Benchmarking)

干货|世界各地锂离子电池产品认证介绍

上汽通用APQP详解

干货|最新完整版FMEA培训教材。请收藏!

记住这串数字184538,就容易理解PPAP了

干货|六西格方法和工具在项目D(定义)阶段实施中的运用。请收藏!

六西格改善方法论和工具在项目实施中的运用案例分享-测量(M )阶段

六西格改善方法论和工具在项目实施中的运用案例分享-分析(A )阶段

六西格改善方法论和工具在项目实施中的运用案例分享-改善(I )阶段

六西格玛工具在项目实施中的应用-C阶段

六西格玛案例之降低方形电池外观不良率!

六西格玛案例之降低电池水分含量!

六西格玛案例之优化电池烘烤工艺!

六西格玛案例之降低极片颗粒不良率

六西格玛案例之优化电池高温老化工艺!

六西格玛案例之提升电芯设计容量!

六西格玛案例之降低电池低压率!

六西格玛项目之提升涂布面密度过程能力案例分享

六西格玛案例之提高涂布合格率分享!

六西格玛案例之降低电池外观不良率

六西格玛案例之降低电池漏液不良率





言质有锂,您身边的学习好帮手!若公众号免费的、海量资讯还满足不了爱学习及上进的你,那么可以考虑并关注以下知识星球。知识星球-新质能源智库已收集了质量管理的及新能源(含锂电池及材料、钠离子电池、固态电池、光伏电池、储能电池及系统、新能源行业分析及研究报告、以及各类材料和电池标准等)等干货资料1400+。相关内容还在持续更新中;专业质量领域知识星球-质量云也正式起航了,资料信息持续更新中,已收集了质量类的干货资料(含国内外先进及系统化的质量理论、方法和工具、管理体系、六西格玛、标杆企业及优秀企业案例等)150+。欢迎大家的加入!






言质有锂
言质有锂,您身边的学习好帮手!专注于新能源及质量等领域,重在分享、利他、助力、赋能。定期会有质量、六西格玛、体系、认证、新能源汽车、电子、管理、最新质量理论、方法和工具、相关标准等方面的资讯更新和分享。感谢社会各界人士的关注和厚爱!
 最新文章