用于自动驾驶最优间距选择和速度规划的多配置二次规划(MPQP)

文摘   2024-12-16 13:08   江苏  

 点击下方卡片,关注“自动驾驶之星

这里有一群奋斗在自动驾驶量产第一线的小伙伴等你加入Introduction

  • 论文链接:https://arxiv.org/pdf/2401.06305.pdf

摘要

本文介绍了用于自动驾驶最优间距选择和速度规划的多配置二次规划(MPQP)。平滑且安全的路径规划对于自动驾驶汽车的成功部署是至关重要的。本文提出了一种用于自动驾驶最优速度规划的数学表示,其在具有实际约束的高保真度的仿真和现实道路演示中得以验证。该算法使用广度优先搜索来探索时间和空间域中内部交通间距。对于每个间距,二次规划找到一个最优的速度配置,将时间和空间对与动态障碍物同步。在Carla中进行定性和定量分析,以讨论所提出算法的平滑性和鲁棒性。最后,本文给出了城市驾驶的道路演示结果。

主要贡献

本文的贡献总结如下:

1)本文探索了与动态障碍物相关的空间和时间场景的多种组合;

2)本文针对探索的场景优化速度配置;

3)本文还引入了将横向加速度限制与给定路径上的曲率结合的技术;

4)本文在仿真和道路测试中对所提出的框架进行大量验证。

论文图片和表格








总结

受到路径-速度分解方法有效性的启发,本文提供了一个数学框架来最优地规划自动驾驶汽车的速度配置,即MPQP。给定一条路径,当存在动态目标时,我们利用广度优先搜索算法来寻找跟随路径的时序组合。然后,将每个配置作为下限和上限集成到二次规划中。该表示和实现在计算方面是高效的,能够为10s以上的规划范围在平均20ms内提供一个新的解决方案。CARLA中的仿真结果证明了MPQP的强大潜力,随后进行了实车演示。一个注意点是,这项工作依赖于对交通的确定性预测,这阻碍了产生交互行为的能力。此外,处理多模态预测中的不确定性将是未来的研究工作。


知识星球,新人优惠券来袭,结识一群志同道合的小伙伴一起成长。









知识星球,新人优惠券来袭,结识一群志同道合的小伙伴一起成长。

下一个风口会不会是生成式AI 与具身智能的时代,我们特意创建了生成式AI与具身智能交流社区,关于大模型,机器人的相关业界动态,学术方向,技术解读等等都会在社区与大家交流,欢迎感兴趣的同学加入我们(备注具身智能)!   

自动驾驶之星知识星球主打自动驾驶量产全技术栈学习,并包括: 学习板块,求职面试,有问必答,论文速递,行业动态五大板块!星球内部包括端到端大模型,VLM大模型,BEV 障碍物/车道线/Occ 等的学习资料!

生成式AI与具身智能知识星球,我们相信生成式AI 与具身智能会碰撞出出乎我们意料的内容,本知识形象并包括: 学习板块,求职面试,有问必答,论文速递,行业动态五大板块!星球内部包括生成式AI大模型,具身智能,业界资料整理等的学习资料!


自动驾驶之星是面向自动驾驶&智能座舱量产向相关的交流社区,欢迎大家添加小助手加入我们的交流群里,这里有一批奋斗在量产第一线的小伙伴等你的加入!

👇点个“赞”和“在看”吧


自动驾驶之星
自动驾驶之星,是一个以自动驾驶\x26amp;智能座舱量产交流为主的社区。这里有自动驾驶\x26amp;智能座舱量产第一线的前沿动态,有一群奋斗在自动驾驶\x26amp;智能座舱量产第一线的小伙伴在分享他们的量产经历。期待你的加入!希望每个人在这个浪潮中都能成为自动驾驶之星!
 最新文章