01
概述
02
Senna解决的研究问题
03
Senna的关键创新
在模型层面,Senna提出层次化的规划策略,可以充分利用大模型的常识知识和逻辑推理能力,生成准确的决策指令,并通过端到端模型生成具体的轨迹。另外,Senna设计了针对环视和多图的策略,通过图像token压缩和精心设计的环视prompt,有效提高了多模态大模型对驾驶场景的理解。
在数据方面,我们设计了多种可以大规模自动标注的面向规划的驾驶问答数据,包括场景描述、交通参与者行为预测、交通信号识别以及自车决策等。这些问答数据对于Senna生成准确的决策起到了关键作用。
在训练层面,我们提出三阶段的大模型训练策略,不仅提升了Senna在驾驶场景的表现,且有效保留了其常识知识而不至于出现模式坍塌的问题。
04
Senna的实验及应用效果
05
未来探索方向