PBJ | 山东师范大学陈敏课题组揭示泌盐盐生植物响应盐胁迫的关键代谢通路

学术   2024-12-11 16:28   英国  

近日,Plant Biotechnology Journal杂志在线发表了由山东师范大学陈敏课题组撰写的“Integrated transcriptomic and metabolomic analyses uncover the key pathways of Limonium bicolor in response to salt stress”论文。该研究工作通过转录组和代谢组关联分析,揭示高盐胁迫下,泌盐盐生植物二色补血草除了通过盐腺泌盐降低离子胁迫外,还通过增加有机可溶性物质和黄酮类化合物的合成来降低渗透胁迫和氧化胁迫。研究团队报道的植物耐盐的这一有效策略,为深入解析泌盐盐生植物应对高盐胁迫的分子机制提供了参考和借鉴。

土壤盐碱化已成为制约全球农业生产的环境胁迫(Shabala et al., 2014; Munns et al., 2020)。据联合国粮食及农业组织统计,全球约有9.6亿公顷土地目前正受到盐碱化的影响(Grigore and Toma, 2020; Munns et al., 2020)。大多数盐碱化土地不适合种植普通作物(Gong et al., 2020)。然而,这些土地蕴含着丰富的耐盐物种,是重要后备土地资源。盐生植物是能够在高于或者相当于200 mM NaCl调节下能够正常生长、发育和完成生活史的植物类群(Grigore and Vicente, 2023),是盐碱土中的优势物种,分为真盐生植物、泌盐盐生植物和拒盐盐生植物(Casu, 1905; Grigore and Vicente, 2023)。由于长期适应盐渍环境,盐生植物进化出了应对盐胁迫的耐盐机制,包括降低功能器官或细胞质中的离子水平、采用高效的活性氧(ROS)清除策略和渗透调节能力(Zhu, 2003; Chen et al., 2018; Gong et al., 2020)。课题组以典型的泌盐盐生植物二色补血草为材料,前期研究表明该物种降低盐害的主要机制是通过调控盐腺发育和泌盐降低离子害(Li et al., 2020; Yuan et al., 2022; Zhu et al., 2024)。但是盐胁迫下植物功能器官的离子含量仍然会增加,因此降低渗透胁迫和氧化胁迫的机制对于此物种的耐盐性也至关重要。山东师范大学陈敏课题组揭示了高盐胁迫下增加有机可溶性物质和黄酮类化合物的合成来降低渗透胁迫和氧化胁迫也是该物种耐盐的重要策略。全文主要研究结果如下:

1 盐处理对二色补血草幼苗生长和生理指标的影响

研究者用不同浓度NaCl溶液处理6叶期二色补血草幼苗并测定其生长和生理指标。结果表明低浓度NaCl(100 mM NaCl)处理促进其生长,而高浓度NaCl(300 mM NaCl)处理抑制其生长(图1a,b)。叶绿素含量与生长指标表现出相反的趋势(图1c)。主要光合指标的变化趋势和生长指标一致(图1d)。研究者对盐处理下二色补血草幼苗的生理指标进行了测定,发现盐处理明显增加了幼苗的Na+含量和Na+/K+,显著降低了K+含量(图2a,b)。可溶性蛋白和脯氨酸含量的变化与Na+含量一致(图2c,d)。有趣的是,可溶性糖(包括葡萄糖、果糖、蔗糖)含量在低浓度NaCl处理下显著降低,在高浓度NaCl处理明显增加(图2e-h)。氧化胁迫指标表明,低盐处理下,幼苗没有受到氧化胁迫或者受到很小的氧化胁迫,而高盐处理下,幼苗受到严重的氧化胁迫(图2i-l)。低盐处理下,抗氧化酶活性明显增加,而高盐胁迫下,抗氧化酶活性明显降低 (图2m-p)。以上结果说明,二色补血草是典型的盐生植物,其最优的生长条件是低盐环境,高盐胁迫下,其生长受到明显抑制。


图1. 不同浓度NaCl处理对二色补血草幼苗的(a)生长表型、(b)生长参数、(c)叶绿素含量、(d)光合参数的影响。


图2. 不同浓度NaCl处理对二色补血草幼苗无机离子含量、有机溶质含量、活性氧含量、抗氧化酶基因表达水平及抗氧化酶活性的影响


2 转录组测序分析及差异表达基因功能注释

        研究者分别对100 mM NaCl(低盐) 和300 mM NaCl(高盐)处理的二色补血草叶片进行转录组测序分析,发现低盐处理下,差异表达的基因主要富集在“淀粉和蔗糖代谢”、“植物-病原物互作”以及“MAPK信号通路”等通路。高盐胁迫下,差异表达的基因主要富集在“硫代葡萄糖苷生物合成”、“光合作用-天线蛋白”和“苯丙烷生物合成”等通路。高盐胁迫和低盐处理相比,差异基于主要富集在“光合作用-天线蛋白”、“角质、木栓质和蜡质生物合成”以及“苯丙烷生物合成”等通路。以上结果表明,在低盐处理下,二色补血草通过增强捕光结构、加厚表皮屏障和提高次生代谢物的产生来抵抗盐胁迫,在高盐胁迫下,主要依赖次生代谢物的合成来抵抗氧化和渗透胁迫。


3 差异代谢分析及功能注释

研究者使用LC-ESI-MS/MS系统对盐处理下二色补血草幼苗的靶向代谢物进行分析,共鉴定出817种代谢物(图3a)。在不同浓度NaCl处理下,代谢物含量存在显著差异,低盐和高盐处理下鉴定到8类差异代谢物(图3c)。这些代谢物分别是黄酮类、脂质类、酚酸类、生物碱类、氨基酸及其衍生物类、有机酸类、木脂素和香豆素类、核苷及其衍生物类、鞣质类和其他类(图3d-f)。在低盐处理下,黄酮类、脂质类、酚酸类、生物碱类、氨基酸及其衍生物类减少,而有机酸类、木脂素类、香豆素类、核苷及其衍生物类增加(图3d)。高盐胁迫下,氨基酸及其衍生物类、脂质类、酚酸类、核苷及其衍生物类减少,而生物碱类、黄酮类、木脂素类和香豆素类增加(图3e)。和低盐处理相比,高盐胁迫下共鉴定出91种差异代谢物(图4c),在上调最显著的10种代谢物中,有4种黄酮、3种生物碱、1种酚酸、1种脂质和1种氨基酸衍生物。4种黄酮类化合物为槲皮素-3-O-(6''-O-对香豆酰)葡糖苷、槲皮素-3-O-(2''-O-对香豆酰)半乳糖苷、杨梅素-3-O-(2''-没食子酰基-4''-乙酰基)鼠李糖苷和杨梅素-3-O-(4''-乙酰基)鼠李糖苷。以上结果表明,低盐和高盐处理下代谢物含量呈现出不同的变化趋势。


图3. 代谢组及差异代谢物分析

图4. 差异代谢物表达分析


4 转录组和代谢组关联分析

研究者对转录组和代谢组进行了关联分析,对转录组和代谢组数据进行的KEGG富集分析揭示了显著富集的前25个代谢途径。其中12个代谢途径在低盐和高盐处理下都显著富集。和低盐处理相比,高盐胁迫下明显富集的代谢途径包括“植物激素信号传导”、“苯丙烷类生物合成”和“戊糖和葡糖醛酸相互转化”。关键的差异基因和代谢物主要集中在“苯丙烷类生物合成”和“类黄酮生物合成”途径中(图5)。高盐胁迫下,8种酚类代谢物(咖啡酰莽草酸、松柏醇苷、松柏醇、1-O-芥子酰基-β-D-葡萄糖、芥子酸、芥子醛、芥子醇和丁香苷)含量显著增加(图5a)。在低盐处理下,8种酚类化合物(对香豆酸、咖啡酰莽草酸、松柏醇苷、阿魏酸、芥子酸、1-O-芥子酰基-β-D-葡萄糖、芥子醛和松柏醇)含量显著增加。在低盐和高盐处理下,5种酚类化合物(咖啡酰莽草酸、松柏醇苷、松柏醇、1-O-芥子酰基-β-D-葡萄糖和芥子醛)呈现一致趋势。参与这些代谢物合成的关键基因,特别是4CL和COMT的表达模式与代谢物含量变化趋势一致。高盐胁迫下,10种类黄酮代谢物含量显著增加(图5b),其中柚皮素的含量增加了85%,柚皮素查耳酮增加了59%,松黄烷增加了42%,新橙皮苷增加了27%。然而,在低盐处理下,10种类黄酮代谢物含量明显降低,包括柚皮素、柚皮素查耳酮、松黄烷等。参与调控这些代谢物形成的关键基因HCT、CHS和FLS的表达模式与代谢物的变化趋势一致。以上结果表明, 二色补血草通过调控基因表达和代谢物合成以应对不同浓度的盐处理。


图5. 主要代谢途径

博士生朱智慧、硕士生周雨清为论文共同第一作者,已毕业硕士生刘秀悦、在读硕士生孟范霞和徐晨涵为论文共同作者,陈敏教授为该研究工作通讯作者。研究工作得到了国家自然科学基金、山东省重点研发项目的资助。



论文链接:

https://onlinelibrary.wiley.com/doi/10.1111/pbi.14534



References:

l Abulfaraj, A. A. (2020) Stepwise signal transduction cascades under salt stress in leaves of wild barley (Hordeum spontaneum). Biotechnol Biotec Eq. 34, 860–872.

l Ahmad, P., Venema, K. and Corpas, F. J. (2022) Unravelling salt tolerance mechanisms in plants: From lab to field. Plant Physiol Bioch. 176, 31–33.

l Bhargava, A., Mansfield, S. D., Hall, H. C., Douglas, C. J. and Ellis, B. E. (2010) MYB75 functions in regulation of secondary cell wall formation in the Arabidopsis inflorescence stem. Plant Physiol. 154, 1428–1438.

l Cao, M., Fraser, K., Huege, J., Featonby, T., Rasmussen, S., Jones, C. (2015) Predicting retention time in hydrophilic interaction liquid chromatography mass spectrometry and its use for peak annotation in metabolomics. Metabolomics 11, 696–706.

l Chen, J., Teng, J., Ma, L., Tong, H., Ren, B., Wang, L. and Li, W. (2017) Flavonoids Isolated From the Flowers of Limonium bicolor and their In vitro Antitumor Evaluation. Pharmacogn Mag. 13, 222-225.

l Chen, K., Song, M., Guo, Y., Liu, L., Xue, H., Dai, H. and Zhang, Z. (2019a) MdMYB46 could enhance salt and osmotic stress tolerance in apple by directly activating stress-responsive signals. Plant Biotechnol J. 17, 2341–2355.

l Chen, Y. Z., Pang, Q. Y., He, Y., Zhu, N., Branstrom, I., Yan, X. F. and Chen, S. (2012) Proteomics and metabolomics of Arabidopsis responses to perturbation of glucosinolate biosynthesis. Mol. Plant, 5, 1138–1150.

l Chen, Y., Wu, X., Lai, J., Liu, Y., Song, M., Li, F. and Gong, Q. (2023) Integrated biochemical, transcriptomic and metabolomic analyses provide insight into heat stress response in Yangtze sturgeon (Acipenser dabryanus). Ecotox. Environ. Safe. 249, 114366.

l Cui, L. G., Shan, J. X., Shi, M., Gao, J. P. and Lin, H. X. (2014) The miR156-SPL9-DFR pathway coordinates the relationship between development and abiotic stress tolerance in plants. Plant J. 80, 1108–1117.

l Debbarma, J., Sarki, Y. N., Saikia, B., Boruah, H. P. D., Singha, D. L. and Chikkaputtaiah, C. (2019) Ethylene Response Factor (ERF) Family Proteins in Abiotic Stresses and CRISPR-Cas9 Genome Editing of ERFs for Multiple Abiotic Stress Tolerance in Crop Plants: A Review. Mol. Biotechnol. 61, 153–172.

l Dong, N. Q. and Lin, H. X. (2021) Contribution of phenylpropanoid metabolism to plant development and plant-environment interactions. J. Integr. Plant Biol. 63, 180–209.

l Gong, Z., Xiong, L., Shi, H., Yang, S., Herrera-Estrella, L. R., Xu, G. et al. (2020) Plant abiotic stress response and nutrient use efficiency. Sci China Life Sci. 63, 635–674.

l Grigore, M. N. and Vicente, O. (2023) Wild Halophytes: Tools for Understanding Salt Tolerance Mechanisms of Plants and for Adapting Agriculture to Climate Change. Plants-Basel 12 (2), 221.

l Hu, P., Zhang, K. and Yang, C. (2019) BpNAC012 Positively Regulates Abiotic Stress Responses and Secondary Wall Biosynthesis. Plant Physiol. 179 (2), 700–717.

l Iqbal, A., Qiang, D., Xiangru, W., Huiping, G., Hengheng, Z., Xiling, Z. and Meizhen, S. (2023) Integrative physiological, transcriptome and metabolome analysis reveals the involvement of carbon and flavonoid biosynthesis in low phosphorus tolerance in cotton. Plant Physiol. Biochem. 196, 302–317.

l Jiang, N., Doseff, A. I. and Grotewold, E. (2016) Flavones: From Biosynthesis to Health Benefits. Plants-Basel 5 (2), 27.

l Kirik, V., Bouyer, D., Schöbinger, U., Bechtold, N., Herzog, M., Bonneville, J. M., Hülskamp, M. (2001) CPR5 is involved in cell proliferation and cell death control and encodes a novel transmembrane protein. Curr. Biol. 11 (23), 1891–1895.

l Li, J., Liu, Y., Zhang, M., Xu, H., Ning, K., Wang, B. and Chen, M. (2022) Melatonin increases growth and salt tolerance of Limonium bicolor by improving photosynthetic and antioxidant capacity. BMC Plant Biol. 22 (1), 16.

l Liu, J., Meng, F., Jiang, A., Hou, X., Liu, Q., Fan, H. and Chen, M. (2023) Exogenous 6-BA enhances salt tolerance of Limonium bicolor by increasing the number of salt glands. Plant Cell Rep. 43 (1), 12.

l López-Berenguer, C., Martínez-Ballesta, M.delC., Moreno, D. A., Carvajal, M. and García-Viguera, C. (2009b) Growing hardier crops for better health: Salinity tolerance and the nutritional value of broccoli. J. Agric. Food. Chem. 57 (2), 572–578.

l Marinova, K., Pourcel, L., Weder, B., Schwarz, M., Barron, D., Routaboul, J.M., Debeaujon, I. et al. (2007) The Arabidopsis MATE transporter TT12 acts as a vacuolar flavonoid/H+ -antiporter active in proanthocyanidin-accumulating cells of the seed coat. The Plant cell, 19 (6), 2023–2038.

l Munns, R., Passioura, J. B., Colmer, T. D. and Byrt, C. S. (2020) Osmotic adjustment and energy limitations to plant growth in saline soil. New phytol. 225 (3), 1091–1096.

l Radovich, T. J., Kleinhenz, M. D. and Streeter, J. G. (2005) Irrigation timing relative to head development influences yield components, sugar levels, and glucosinolate concentrations in cabbage. J Am Soc Hortic Sci. 130 (6), 943-949.

l Robak, J., Gryglewski, R. J. (1988) Flavonoids are scavengers of superoxide anions. Biochem. Pharmacol 37 (5), 837–841.

l Shang, J., Wu, Z.W. and Ma, Y.G. (2022) Phenylpropanoid metabolism pathway in plants. Chin. J. Biochem. Mol. Biol, 38, 1467-1476.

l Wang, Y., Liu, W., Li, W., Wang, C., Dai, H., Xu, R., Zhang, Y. et al. (2024b) Integrative analysis of metabolome and transcriptome reveals regulatory mechanisms of flavonoid biosynthesis in soybean under salt stress. Front Plant Sci. 15, 1415867.

l Yuan, F., Wang, X., Zhao, B., Xu, X., Shi, M., Leng, B., Dong, X. et al. (2022) The genome of the recretohalophyte Limonium bicolor provides insights into salt gland development and salinity adaptation during terrestrial evolution. Mol. Plant 15 (6), 1024–1044.

l Zhu J. K. (2003). Regulation of ion homeostasis under salt stress. Curr. Opin. Plant Biol. 6 (5), 441–445.

l Zhu, Z., Liu, Y., Wang, Y., Jiang, A., Meng, F., Wang, B. and Chen, M. (2024) Integrated physio-biochemical and transcriptomic analyses reveal the mechanism underlying ABA-mediated alleviation of salt stress in Limonium bicolor seedlings. Environ. Exp. Bot. 220, 105707.

E
N
D

本公众号免费发布招聘信息和宣传科研成果

已推送文献可提供PDF,如有需要,文章后留言即可

欢迎联系微信:506911145 或邮箱506911145@qq.com

植物科学SCI
持续关注植物科学研究进展,每天分享最新研究成果!
 最新文章