王朴炎,俞嘉辉,臧显峰,曹求洋,郭小平,刘栓
1 宁波市电力设计院有限公司 宁波 315000
2 广东蓝迪威工程技术有限公司 深圳 518107
3 国网浙江省电力有限公司电力科学研究院 杭州 310010
4 中国科学院宁波材料技术与工程研究所中国科学院海洋新材料与应用技术重点实验室 宁波 315201
0 前言
1 环氧重防腐涂层的深海防护机理研究
图 1 环氧磷酸酯的合成[42]
Fig. 1 Synthesis diagram of epoxy phosphate [42]
图 2 环氧石墨烯锌底漆防腐机理
Fig. 2 Anti-corrosion mechanism of epoxy graphene zinc primer
图 3 环氧石墨烯锌底漆与环氧富锌底漆在 3.5wt.% NaCl 溶液中浸泡不同时间的 交流阻抗谱图(涂层厚度为 50 μm)
Fig. 3 EIS spectra of epoxy graphene zinc primer and epoxy zinc rich primer immersed in 3.5wt.% NaCl solution after different times (coating thickness was 50 μm)
2 深海环境因素对环氧重防腐涂层防护性能的影响机制
图 4 高固体涂层 / 铝合金体系在常压和 36 MPa 模拟 海水溶液中浸泡 35 d 后的 SEM 照片[45]
Fig. 4 SEM images of high solid coating / aluminum alloy system soaked in atmospheric pressure and 36 MPa simulated seawater solution after 35 d[45]
3 环氧重防腐涂层在深海海工装备的 最新研究进展
图 5 高固体份环氧石墨烯厚浆涂层在钢管桩上的涂装照片
Fig. 5 Coating photo of high solid graphene modified epoxy coating coated on steel pipe piles
4 结论与展望
参考文献:
[1] 郑超,魏世丞,梁义,等. 深潜器结构材料腐蚀行为的 研究现状[J]. 材料保护,2018,51(3):103-107. ZHENG Chao, WEI Shicheng, LIANG Yi, et al. A review of corrosion behaviors of submerged structural materials[J]. Materials Protection, 2018, 51(3): 103-107. (in Chinese)
[2] 袁玮,黄峰,张恒康,等. 模拟深海无氧环境下阴极保 护电位对 X80 钢应力腐蚀行为的影响[J]. 材料保护, 2020,53(11):5-12. YUAN Wei, HUANG Feng, ZHANG Hengkang, et al. Effect of cathodic protection potential on stress corrosion behavior of X80 steel in simulated deep marine environment without dissolved oxygen[J]. Materials Protection, 2020, 53(11): 5-12. (in Chinese)
[3] PIETRO T, SERGIO B, DANIELA C, et al. Bioremediation for the recovery of oil polluted marine environment, opportunities and challenges approaching the Blue Growth[J]. Marine Pollution Bulletin, 2024, 200: 116157.
[4] YE X D, ZHANG B Y, LEE K, et al. A multi-criteria simulation-optimization coupling approach for effective emergency response in marine oil spill accidents[J]. Journal of Hazardous Materials, 2024, 469: 133832.
[5] DANG W, KIM S, DANG Q S, et al. Research on the spatial evolution of resources and sustainable development of the spatial environment for the development of marine cities[J]. Journal of Sea Research, 2024, 198: 102476.
[6] BAI X H, WANG Y P, FAN L, et al. Microscopic investigation on pitting corrosion of Ni-Cr-Mo-V high-strength steel weldment in simulated deep-sea environment[J]. Journal of Materials Research and Technology, 2024, 38: 108397.
[7] JIANG S Z, TIAN Z H, JIANG X Z, et al. Investigation on galvanic corrosion behavior of Q235 in deep-sea water / sediments of the South China Sea via manned deep diving[J]. Journal of Materials Research and Technology, 2023, 26: 8822-8835.
[8] ZHANG X W, WU W J, LI Y, et al. Corrosion form transition of mooring chain in simulated deep-sea environments: remarkable roles of dissolved oxygen and hydrostatic pressure[J]. Journal of Materials Science & Technology, 2023, 162(1): 118-130.
[9] PIERLUIGI T, ELISA C. A review of studies on corrosion of metals and alloys in deep-sea environment[J]. Ocean Engineering, 2014, 87: 10-15.
[10] MENG F D, LIU L, WANG F H, et al. Synergistic effects of fluid flow and hydrostatic pressure on the degradation of epoxy coating in the simulated deep-sea environment[J]. Progress in Organic Coatings, 2021, 159: 106449.
[11] 邢少华. 深海环境低合金钢/双相不锈钢电偶腐蚀行 为及其防护研究[D]. 北京:中国石油大学,2020. XING Shaohua. Galvanic corrosion and its protection of low alloy steel and duplex stainless steel couples in deep sea[D]. Beijing: China University of Petroleum, 2020. (in Chinese)
[12] LIU B, FANG Z G, WANG H B, et al. Effect of cross linking degree and adhesion force on the anti-corrosion performance of epoxy coatings under simulated deep sea environment[J]. Progress in Organic Coatings, 2013, 76: 1814-1818.
[13] GUAN F, WANG J, ZHAI X F, et al. A comparative study of the corrosion of Q235 carbon steel in six different strains of marine-isolated sulfate reducing prokaryote[J]. International Journal of Electrochemical Science, 2024, 19(2): 100464.
[14] ZHOU X B, WANG Q, SU H, et al. Low efficiency of cathodic protection in marine tidal corrosion of X80 steel in the presence of Pseudomonas sp.[J]. Bioelectrochemistry, 2024, 157: 108656.
[15] JIAO J C, GU Y R, DING X Y, et al. Corrosion characteristics and mechanism of 6082 / AZ31 / 6082 laminated metal composites in tropical marine atmospheric environments[J]. Journal of Materials Research and Technology, 2024, 29: 5214-5224.
[16] XIANG L, TAO J Q, CHEN Q, et al. Grain-interior corrosion and tensile performance degradation of 2XXX Al-Li alloy in an actual marine environment[J]. Journal of Materials Research and Technology, 2023, 26: 5838-5850.
[17] LIU Y, MA H B, WANG Z, et al. Effect of epoxy resin / mineralized film composite coating on the corrosion resistance of Mg-3Nd alloy[J]. Journal of Materials Research and Technology, 2024, 29: 1650-1663.
[18] LI Y F, NAN F. Achieving long term anti-corrosion waterborne epoxy coating by attapulgite loaded octadecylamine / graphene nanocomposite[J]. Polymer Testing, 2023, 129: 108290.
[19] LI C H, LI Y, CHEN Q L, et al. Ti3C2Tx@ polyaniline / epoxy coating based on cathodic electrophoretic deposition with effective corrosion inhibition effect for corrosion protection on P110 steel[J]. Progress in Organic Coatings, 2023, 187: 108173.
[20] XIE L F, ZHOU W L, ZHOU B, et al. Exploring salt-mist corrosion resistance of GPTMS functionalized graphene oxide reinforced epoxy resin composite coating on shot-peened Ti-15333 titanium alloy[J]. Surfaces and Interfaces, 2023, 44: 103675.
[21] WANG X, GAO K, EUGENEB C, et al. Cellulose nanocrystals-reinforced waterborne epoxy coatings with enhanced corrosion resistance for steel[J]. International Journal of Biological Macromolecules, 2024, 25(7): 128755.
[22] XIA Y Q, TONG L F, FENG X F, et al. Effects of polydopamine functionalized graphitic carbon nitride-cerium oxide nanofiller on the corrosion resistance of epoxy coating[J]. Progress in Organic Coatings, 2024, 187: 108111.
[23] MAJID M, EFFAT K, ALIMORAD R, et al. Construction of a high-performance anti-corrosion epoxy coating in the presence of poly(aniline-co-pyrrole) nanospheres[J]. Reactive and Functional Polymers, 2024, 194: 105794.
[24] MIRI T, SEIFZADEH D, RAJABALIZADEH Z. Smart epoxy coating containing inhibitor-loaded cellulose nanocrystals for corrosion protection of steel[J]. Surface and Coatings Technology, 2024, 477: 130241.
[25] OTÍLIO B F D, DAVI R D O, LUCAS R R D, et al. Silva acetylated lignin as a biocomponent for epoxy coating-anticorrosive performance analysis by accelerated corrosion tests[J]. Surface and Coatings Technology, 2023, 474: 130116.
[26] CA H, LI X T, ZHANG Y L, et al. A high corrosion-resistant waterborne epoxy resin coating improved by addition of multi-interface structured zinc phosphate particles[J]. Journal of Materials Research and Technology, 2023, 26: 7829-7844.
[27] AHMED N O, EHSSAN A B. Performance of functionalized graphene oxide to improve anti-corrosion of epoxy coating on 2024-T3 aluminium alloy[J]. Materials Chemistry and Physics, 2023, 305: 127849.
[28] HE Y S, FAN X Q, HUANG Y, et al. Experimental and theoretical evaluations on the parallel-aligned graphene oxide hybrid epoxy composite coating toward wear resistance[J]. Carbon, 2024, 217: 118629.
[29] THAIS C O, EVELYN A N S, LUCIANA S C. Graphene derivatives as reinforcement in coatings based on epoxy and silane for enhancing its corrosion resistance-a latest advances review[J]. International Journal of Adhesion and Adhesives, 2023, 126: 103484.
[30] SONG S J, FAN X Q, YAN H N, et al. Facile fabrication of continuous graphene nanolayer in epoxy coating towards efficient corrosion / wear protection[J]. Composites Communications, 2022, 37: 101437.
[31] LIN H, ZHANG Y Y, ZHANG L Z, et al. Graphene prepared by microfluidization process using induced parallel orientation strategy to enhance anti-corrosion of photocurable epoxy coatings[J]. Progress in Organic Coatings, 2023, 181: 107603.
[32] XIE Z X, YANG Z X, CHU L Y, et al. Nano-epoxidized graphene oxide as a high-barrier film-forming component for purely Cardanol-based epoxy anticorrosion coatings[J].Applied Surface Science, 2024, 655: 159565.
[33] HSIA H, LI G H, LAN Y X et al. Experimental and theoretical calculations of fluorinated few-layer graphene / epoxy composite coatings for anticorrosion applications[J]. Carbon, 2023, 217: 118604.
[34] SHI N Q, LI H Y, LI X, et al. ZIF-8 and benzimidazole co-modified h-BN for enhancing anti-corrosion performance of epoxy coatings[J]. Progress in Organic Coatings, 2023, 183: 107808.
[35] ZHOU M, ZHAO C C, LIU P L, et al. Adsorption behavior of Ti3C2Tx with h-BN nanosheet and their application in waterborne epoxy anti-corrosion coating[J]. Applied Surface Science, 2022, 586: 152778.
[36] GAO H, YANG Y W, MA L M, et al. Preparation and tribological property of MoS2@PDA@POSS core-shell-shell / epoxy composite lubricating coating with good humidity adaptability[J]. Tribology International, 2024, 192: 109301.
[37] 王玉琼,刘栓,刘兆平,等. 石墨烯掺杂水性环氧树脂 的隔水和防护性能[J].电镀与涂饰,2015,34(6):314-320. WANG Yuqiong, LIU Shuan, LIU zhaoping, et al. Water isolation and protective performance of waterborne graphene-doped epoxy coating[J]. Electroplating and Finishing, 2015, 34(6): 314-320. (in Chinese)
[38] 刘栓,姜欣,赵海超,等. 石墨烯环氧涂层的耐磨耐蚀 性能研究[J]. 摩擦学学报,2015,35(5):598-605. LIU Shuan, JIANG Xin, ZHAO Haichao, et al. Corrosion resistance and wear property of graphene epoxy coatings[J]. Tribology, 2015, 35(5): 598-605. (in Chinese)
[39] LIU T, WEI J Y, MA L W, et al. Effect of polyaniline-based plate on the anticorrosion performance of epoxy coating[J]. Progress in Organic Coatings, 2021, 151: 106109.
[40] SU Y, QIU S S, WEI J Y, et al. Sulfonated polyaniline assisted hierarchical assembly of graphene-LDH nanohybrid for enhanced anticorrosion performance of waterborne epoxy coatings[J]. Chemical Engineering Journal, 2021, 426: 131269.
[41] GU L, ZHAO X, TONG X, et al. Facile preparation of polyaniline nanoparticles and their dispersion for waterborne anticorrosion coatings[J]. International Journal of Electrochemical Science, 2016, 11(2): 1621-1631.
[42] 丁纪恒,刘栓,顾林,等. 环氧磷酸酯 / 水性环氧涂层 的耐蚀性能[J].中国表面工程,2015,28(2):126-131. DING Jiheng, LIU Shuan, GU Lin, et al. Corrosion resistance of epoxyphosphate / waterbrone eposy coating on steel[J]. China Surface Engineering, 2015, 28(2): 126-131. (in Chinese)
[43] ZHOU S G, WU Y M, ZHAO W J, et al. Designing reduced graphene oxide / zinc rich epoxy composite coatings for improving the anticorrosion performance of carbon steel substrate[J]. Materials & Design, 2019, 169: 107694.
[44] 刘斌. 深海环境下防腐蚀涂料性能评价技术研究[J]. 上海涂料,2011,9(5):34-36. LIU Bin. Study on the evaluation technique for the performance of anticorrosion coatings under deep sea environment[J]. Shanghai Coating, 2011, 49(5): 34-36. (in Chinese)
[45] 唐楚天,李想,王西明,等. 高固体分环氧防腐蚀涂 层 / 铝合金在模拟超深海高压环境下的防护行为研究 [J].材料保护,2021,54(7):15-21. TANG Chutian, LI Xiang, WANG Ximing, et al. Research on the protective behavior of high solid content epoxy anti-corrosive coating / aluminum alloy system in simulated ultra-deep sea high pressure environment[J]. Materials Protection, 2021, 54(7): 15-21. (in Chinese)
[46] 何筱姗,吕平,何鑫,等. 关于深海环境下金属结构腐 蚀的研究新进展 [J]. 环境工程, 2014 , 21(32) :1020-1023. HE Youshan, LÜ Ping, HE Xin, et al. New development of the research on corrosion of material structure in deepsea environment[J]. Environment Engineering, 2014, 21(32): 1020-1023. (in Chinese)
[47] YU M D, LU Q Y, CUI Z Y, et al. Siloxane-epoxy composite coatings for enhanced resistance to large temperature variations[J]. Progress in Organic Coatings, 2020, 139: 105457.
[48] TOBBALA D E, ABDALSALAM A, AGWA I S. Bond performance of a hybrid coating zinc-rich epoxy incorporating nano-ferrite for steel rebars subjected to high temperatures in concrete[J]. Journal of Building Engineering, 2020, 32: 101698.
[49] YUAN S, ZHAO X, JIN Z Q, et al. Fabrication of robust, durable and integrated Janus coating for corrosion and fouling protection in marine environment[J]. Progress in Organic Coatings, 2024, 187: 108152.
[50] ALI A, CULLITON D, FAHAD S, et al. Nature-inspired anti-fouling strategies for combating marine biofouling[J]. Progress in Organic Coatings, 2024, 189: 108349.
[51] WEI X S, LIAO Z Y, LIANG Y, et al. Superhydrophobic Fe-based amorphous alloy coatings with excellent anti-fouling and anti-corrosion properties by picosecond laser texturing[J]. Applied Surface Science, 2024, 642: 158612.
[52] CAO X K, PAN J L, DONG Z H, et al. Degradation mechanisms of corrosion and biofouling resistance of superhydrophobic coatings in harsh marine conditions[J]. Progress in Organic Coatings, 2022, 173: 107222.
[53] WU X, YANG C, WU L L, et al. Self-repairing and anti-fouling performance of anticorrosive coating in marine environment[J]. Polymer Testing, 2023, 124: 108090.
[54] XU Y Z, ZHANG Q L, REN W B, et al. Interaction of erosion and corrosion on high-strength steels used for marine dredging engineering[J]. Wear, 2024, 544: 205309.
[55] SU Y J, SHI Y, LI Y C, et al. Corrosion behavior on carbon steel affected by iron-reducing bacteria via dissimilatory Fe( Ⅲ ) reduction in simulated marine atmospheric environment[J]. Corrosion Science, 2023, 220: 111283.
[56] ZHANG M H, SUN S H, LIU K, et al. Research on the critical chloride content of reinforcement corrosion in marine concrete-A review[J] Journal of Building Engineering, 2023, 79: 107838.
[57] DU F Y, JIN Z Q, XIONG C S, et al. Nanoindentation analysis of corrosion products and induced expansion stress in reinforced concrete exposed to marine environments[J]. Journal of Building Engineering, 2023, 78: 107753.
[58] JIANG H, WANG W H, LI J W, et al. Fabrication of novel self-healable ultraslippery surface for preventing marine microbiologically influenced corrosion[J]. Journal of Industrial and Engineering Chemistry, 2022, 109: 320-329.
[59] CHEN X, WEN S F, FENG T, et al. High solids organic-inorganic hybrid coatings based on silicone-epoxy-silica coating with improved anticorrosion performance for AA2024 protection[J]. Progress in Organic Coatings, 2020, 139: 105374.
[60] SANCHEZ J M, OSUNAR M, BETHENCOURT M, et al. Monitoring the degradation of a high solids epoxy coating by means of EIS and EN[J]. Progress in Organic Coatings, 2007, 60(3): 248-254.
[61] 程德彬,刘文慧,苏孟兴,等. 深海装备防腐涂料研究 进展与性能要求[J]. 涂层与防护,2023,44(1):1-5. CHENG Debin, LIU Wenhui, SU Mengxing, et al. Progress in anticorrosive coatings for abyssal equipment and performance requirements[J]. Coating and Protection, 2023, 44(1): 1-5. (in Chinese)
[62] 王勋龙,于青,王燕,等. 深海材料及腐蚀防护技术研 究现状[J].全面腐蚀控制,2018,32(10):80-86. WANG Xunlong, YU Qing, WANG Yan, et al. Research status of deep sea materials and corrosion protection technology[J]. Total Corrosion Control, 2018, 32(10): 80-86. (in Chinese)
[63] YOUNES Z, MARYAMA H, ZAKARYAA Z, et al. Epoxy coating modified with graphene: a promising composite against corrosion behavior of copper surface in marine media[J]. Journal of Alloys and Compounds, 2020, 820: 153380.
[64] YANG Z G, CHE J, ZHANG Z Z, et al. High-efficiency graphene / epoxy composite coatings with outstanding thermal conductive and anti-corrosion performance[J]. Composites Part A: Applied Science and Manufacturing, 2024, 181: 108152.
[65] MINAKSHI P, SAMEENA M, ZAIDIMA G H, et al. Development and characterization of fly ash enriched epoxy coatings for corrosion protection in deep sea water[J]. Surface and Coatings Technology, 2024, 485: 130882.
[66] LI S Y, LI H, MA G S, et al. Dense Cr / GLC multilayer coating by HiPIMS technique in high hydrostatic pressure: microstrusctural evolution and galvanic corrosion failure[J]. Corrosion Science, 2023, 225: 111618.
[67] LI Y B, XU H T, HE Y Q, et al. Study on the correlation between indoor accelerated corrosion testing of concrete epoxy polysiloxane coating and real-sea environmental testing in the East China Sea[J]. Case Studies in Construction Materials, 2024, 20: 2905.
[68] HAN X, GUO R J, NIU B L, et al. Enhanced corrosion resistance of epoxy resin coating via addition of CeO2 and benzotriazole[J]. Chinese Journal of Chemical Engineering, 2024, 67: 89-96.
来源:中国表面工程