鞠鹏飞,张达威,吉利,马国政,陈建敏,徐滨士
1 上海航天设备制造总厂有限公司 上海 200245
2 北京科技大学 新材料技术研究院 北京 100083
3 中国科学院兰州化学 物理研究所 兰州 730000
4 陆军装甲兵学院 装备再制造技术国防科技重点实验室,北京 100072
0 引言
1 腐蚀与防护技术
2 减摩与润滑技术
3 耐磨与强化技术
4 维修与再制造技术
5 总结与展望
参考文献
[1]庞留洋. 兵器装备常见腐蚀形态分析[J]. 国防技术基础, 2010(5): 56-60. PANG L Y. Analysis of common corrosion forms of weapon equipment[J]. National Defense Technology Foundation, 2010(5): 56-60 (in Chinese).
[2]侯保荣, 张盾, 王鹏. 海洋腐蚀防护的现状与未来[J]. 中国科学院院刊, 2016(12): 48-53.HOU B R, ZHANG D, WANG P. Current status and future of marine corrosion protection[J]. Chinese Journal of Academy of Sciences, 2016(12): 48-53 (in Chinese).
[3]郭泉忠, 杜克勤. 负向脉宽对 Mg-Gd-Y 合金微弧氧化膜致密性的影响[J]. 腐蚀科学与防护技术, 2018, 25(2): 89-94.GUO Q Z, DU K Q. Effect of negative pulse width on the densification of micro-arc oxidation film on Mg-Gd-Y Alloy[J]. Corrosion Science and Protection Technology, 2018, 25(2): 89-94 (in Chinese).
[4]LI L, LIU L L, LI X, et al. Enhanced tribocorrosion performance of Cr/GLC multilayered films for marine protective application[J]. ACS Applied Materials & Interfaces, 2018: acsami.8b00628.
[5]JIANG Q, MIAO Q, LIANG W, et al. Corrosion behavior of arc sprayed Al-Zn-Si-RE coatings on mild steel in 3.5wt% NaCl solution[J]. Electrochimica Acta, 2014, 115: 644-656.
[6]BANERJEE I, PANGULE R C, KANE R S. Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms[J]. Advanced Materials, 2011, 23(6): 690-718.
[7]SADREDDINI S, AFSHAR A. Corrosion resistance enhancement of Ni-P-nano SiO2 composite coatings on aluminum[J]. Applied Surface Science, 2014, 303: 125-130.
[8]CHEN S S, BROWN LOLA, LEVENDORFMARK, et al. Oxidation resistance of graphene-coated Cu and Cu/Ni alloy[J]. ACS Nano, 2011, 5(2): 1321-1327.
[9]PRASAI D, TUBERQUIA J, HARLR R, et al. Graphene: corrosion inhibiting coating[J]. ACS Nano, 2012, 6(2): 1102- 1108.
[10]LIU S, GU L, ZHAO H C, et al. Corrosion resistance of graphene-reinforced waterborne epoxy coatings[J]. Science& Technology, 2015, 32(6): 1223-1230.
[11]常州君合科技有限公司. 无机防腐涂料及其制备方法和使用方法: 201410077551. 8[P]. 2014-06-11.Changzhou Junhe Technology Co., Ltd. Inorganic anticorrosive coating and preparation method and use method thereof:201410077551. 8[P]. 2014-06-11. (in Chinese).
[12]沈海斌, 刘琼馨, 瞿研. 石墨烯在涂料领域中的应用[J]. 涂料技术与文摘, 2014, 35(8): 20-22.SHEN H B, LIU Q X, YAN Y. The application of graphene in the field of coatings[J]. Coating Technology and Abstracts, 2014, 35(8): 20-22 (in Chinese).
[13]HUANG M, YANG J. Salt spray and EIS studies on HDI microcapsule-based self-healing anticorrosive coatings[J]. Progress in Organic Coatings, 2014, 77(1): 168-175.
[14]FALCÓN J M, OTUBO L M, AOKI I V. Highly ordered mesoporous silica loaded with dodecylamine for smart anticorrosion coatings[J]. Surface & Coatings Technology, 2016, 303: 319-329.
[15]JIAO J, WANG H, GUO W, et al. In-situ confined growth of highly dispersed Ni nanoparticles into hierarchically yolkshell Fe@SiO2 structures as efficient catalysts based on a self-templating reduction strategy[J]. Chemistry An Asian Journal, 2016, 11(24): 3534-3540.
[16]周建龙, 李晓刚, 程学群, 等. 深海环境下金属及合金材料腐蚀研究进展[J]. 腐蚀科学与防护技术, 2010, 22(1): 47-51.ZHOU J L, LI X G, CHENG X Q, et al. Research progress in corrosion of metals and alloy materials in deep sea environment[J]. Corrosion Science and Protection Technology, 2010, 22(1): 47-51 (in Chinese).
[17]侯健, 郭为民, 邓春龙. 深海环境因素对碳钢腐蚀行为的影响[J]. 装备环境工程, 2008, 5(6): 82-84.HOU J, GUO W M, DENG C L. Influence of deep sea environmental factors on corrosion behavior of carbon steel[J]. Equipment Environmental Engineering, 2008, 5(6): 82-84 (in Chinese).
[18]VENKATESAN R, VENKATASAMY M A, BHASKARAN T A, et al. Corrosion of ferrous alloys in deep sea environments[J]. British Corrosion Journal, 2002, 37(4): 257-266.
[19]刘莉. 深海环境下金属及防护涂层腐蚀失效行为研究[C].2018 年全国腐蚀电化学及测试方法学术交流会论文集,2018.LIU L. Study on corrosion failure behavior of metal and protective coatings in deep sea environment[C]. Proceedings of the National Symposium on Corrosion Electrochemistry and Test Methods, 2018 (in Chinese).
[20]MEULER A J, MCKINLEY G H, COHEN R E. Exploiting topographical texture to impart icephobicity[J]. Acs Nano, 2010, 4(12): 7048-7052.
[21]AYRES J, SIMENDINGER W H, BALIK C M. Characterization of titanium alkoxide sol-gel systems designed for antiicing coatings: Ⅱ.mass loss kinetics[J]. Journal of Coatings Technology & Research, 2007, 4(4): 473-481.
[22]Department of the Navy Office of Counsel. Erosion resistant anti-icing coatings: US20070254170A1[P]. 2007-11-01.
[23]WANG H, HE G, TIAN Q. Effects of nano-fluorocarbon coating on icing[J]. Applied Surface Science, 2012, 258(18): 7220-7224.
[24]许占显, 林为干. 军事装备腐蚀检测新技术及应用[J]. 新技术新工艺, 2007(3): 100-103.XU Z X, LIN W Q. New technology and application of military equipment corrosion detection[J]. New Technology & New Process, 2007(3): 100-103 (in Chinese).
[25]马志宏, 汪浚. 砂尘环境中军用装备磨损腐蚀进展的研究[J]. 腐蚀科学与防护技术, 2005, 17(2): 112-115.MA Z L, WANG W. Research on wear and corrosion progress of military equipment in sand dust environment[J]. Corrosion Science and Protetion Technology, 2005, 17(2):112-115 (in Chinese).
[26]周如东. 飞机蒙皮表面处理和涂层选择及涂装工艺[J]. 涂层与防护, 2018, 39(6): 51-54.ZHOU R D. Surface treatment and coating selection and coating process of aircraft skins[J]. Coatings and Protection, 2018, 39(6): 51-54 (in Chinese).
[27]崔凯波, 王向东, 熊超, 等. 火炮驻退机节制环耐磨涂层组织及抗冲蚀性能[J]. 爆炸与冲击, 2018, 38(5): 1013-1022.CUI K B, WANG X D, XIONG C, et al. Microstructure and erosion resistance of wear-resistant coating of artillery retaining ring in artillery retaining[J]. Explosion and Shock Wave, 2018, 38(5): 1013-1022 (in Chinese).
[28]WANG X H, ZHOU Y C. Solid-liquid reaction synthesis and simultaneous densification of polycrystalline Ti2AlC[J]. Zeitschrift Fur Metallkunde, 2002, 93: 66-71.
[29]BARSOUM M W, EL-RAGHY T, ALI M. Processing and characterization of Ti2AlC, Ti2AlN, and Ti2AlC0.5N0.5[J]. Metallurgical & Materials Transactions A, 2000, 31(7): 1857-1865.
[30]BARSOUM M W, SALAMA I, EL-RAGHY T, et al. Thermal and electrical properties of Nb2AlC, (Ti, Nb)2AlC and Ti2AlC[J]. Metallurgical & Materials Transactions A, 2002, 33(9): 2775-2779.
[31]FRODELIUS J, SONESTEDT M, BJÖRKLUND S, et al. Ti2AlC coatings deposited by high velocity oxy-fuel spraying[J]. Surface & Coatings Technology, 2008, 202(24): 5976-5981.
[32]ZHANG Z, SUO H L, CHAI J, et al. Plasma spray of Ti2AlC MAX phase powders: effects of process parameters on coatings' properties[J]. Surface & Coatings Technology, 2017, 325.
[33]TANG C, KLIMENKOV M, JAENTSCH U. Synthesis and characterization of Ti2AlC coatings by magnetron sputtering from three elemental targets and ex-situ annealing[J]. Surface & Coatings Technology, 2017, 309: 445-455.
[34]MAIER B R, GARCIA-DIAZ B L, HAUCH B, et al. Cold spray deposition of Ti2AlC coatings for improved nuclear fuel cladding[J]. Journal of Nuclear Materials, 2015, 466: 712-717.
[35] SÁNCHEZ-LÓPEZ J C, FERNÁNDEZ A. Tribology of diamond-like carbon films: fundamentals and applications[M]. New York: Springer, 2008: 311-338.
[36]DIMIGEN H, KIAGES C P. Microstructure and wear behavior of metal-containing diamond-like coatings[J]. Surface & Coatings Technology, 1991, 49: 543-547.
[37]VOEVODIN A A, ZABINSKI J S. Supertough wear-resistant coatings with ‘chameleon’ surface adaptation[J]. Thin Solid Films, 2000, 370: 223-231.
[38]VOEVODIN A A, ZABINSKI J. Nanocomposite and nanostructured tribological materials for space applications[J]. Composite Science and Technology, 2005, 5: 741-748.
[39]薛群基, 王立平. 类金刚石碳基薄膜材料[M]. 北京:科学出版社, 2012.XUE Q J, WANG L P. Diamond-like carbon-based film materials, science press[M]. Beijing:Science Press, 2012 (in Chinese).
[40]徐滨士, 谭俊, 陈建敏. 表面工程领域科学技术发展[J]. 中国表面工程, 2011, 24(2): 1-12.XU B S, TAN J, CHEN J M. Science and technology development in surface engineering[J]. China Surface Engineering, 2011, 24(2): 1-12 (in Chinese).
[41]DAI W, KE P L, MOON M W, et al. Investigation of the microstructure, mechanical properties and tribological behaviors of Ti-containing diamond-like carbon films fabricated bya hybrid ion beam method[J]. Thin Solid Films, 2012, 520:6057-6063.
[42]WU Y X, LI H X, JI L, et al. A long-lifetime Mos2/a-C: Hnanoscale multilayer film with low internal stress[J]. Surface & Coatings Technology, 2013, 236: 438-443.
[43]DING C H, LI P L, RAN G, et al. Tribological property of self-lubricating PM304 composite[J]. Wear, 2007, 262(5-6): 575-81.
[44]DELLACORTE C, EDMONDS B J. NASA PS400: A new high temperature solid lubricantcoating for high temperature wear applications[R]. NASA TM-2009-215678, 2009.
[45]KONG L Q, ZHU S Y, BI Q L, et al. Effect of Mo and Ag on the friction and wear behavior of ZrO2(Y2O3)-Ag-CaF2- Mo composites from 20 ℃ to 1000 ℃[J]. Tribology International, 2014, 78: 7-13.
[46]AOUADI S M, SINGH D P, STONE D S, et al. Adaptive VN/Ag nanocomposite coatings with lubricious behavior from 25 to 1000 ℃[J]. Acta Materialia, 2010, 58(16): 5326- 5331.
[47]HE N R, LI H X, JI L, ET al. Reusablechromium oxide coating with lubricating behavior from 25 to 1000 ℃ due toselfassembled mesh-like surface structure[J]. Surface & Coatings Technology, 2017, 321: 300-308.
[48]ROBERTS EW, EIDEN M. A space tribology handbook[M]. Netherlands: European Space Agency, 1998: 65-69.
[49]ARGIBAY N, SAWYER W G. Low wear metal sliding electrical contacts at high current density[J]. Wear, 2012: 229- 237.
[50]WILLIAM R, JONES J R, JANSEN M J. Space tribology[D]. New York: NASA/TM-2000-209924, 2003, 3.
[51]王新平. 空间滑动电接触材料的性能及其寿命增长研究 [D]. 长沙: 中南大学, 2012.WANG X P, Research on the performance and life growth of space sliding electrical contact materials, [D]. Changsha: Central South University, 2012 (in Chinese).
[52]DYCK T, BUND A. An adaption of the arc hard equation for electrical contacts with thin coatings[J]. Tribology International, 2016, 102: 1-9.
[53]BERMAN D, DESHMUKH S A, SUBRAMANIAN K R S, et al. Macroscale superlubricity enabled by graphene nanoscroll formation[J]. Science, 2015, 110: 126.
[54]SONG H, JI L, LI H X, et al. Self-forming oriented layer slip and macroscale super-low friction of graphene[J]. Applied Physics Letters, 2017, 110: 073101.
[55]吴运新, 汪复兴, 程荫芊, 等. 高温气冷反应堆中的摩擦磨损及表面涂层技术的应用[J]. 表面工程, 1994, 1: 11-15.WU Y X, WANG F X, CHENG Y X, et al. Application of friction and wear and surface coating technology in high temperature gas-cooled reactor[J]. Surface Engineering, 1994, 1: 11-15 (in Chinese).
[56]HERTZ D. Approach to analysis of wear mechanisms in the case of RCCAsand CRDM latch arms: From observation to understanding[J]. Wear, 2006, 261: 1024-1031.
[57]吴元强, 盛选禹, 汪复兴, 等. 高温气冷堆氦气气氛下的固体润滑技术[J]. 核动力工程, 2001, 22: 460-464.WU Y Q, SHENG X Y, WANG F X, et al. Solid lubricationtechnology in high temperature gas-cooled helium gas environment[J]. Nuclear Power Engineering, 2001, 22: 460-464 (in Chinese).
[58]顾卿, 姜世杭, 褚尧. 磁控溅射氮化铬和氮化钛薄膜的性能[J]. 电镀与涂饰, 2012, 30(12): 22-25.GU Q, JIANG S H, CHU Y. Magnetron sputtering of chromium nitride and titanium nitride film properties[J]. Plating and finishing, 2012, 30(12): 22-25 (in Chinese).
[59]LI Z C, WANG Y X, CHENG X Y, et al. Growing ultrathick crn coating to achieve high load-bearing capacity and good tribological property[J]. ACS Applied Materials & Interfaces, 2018, 10: 2965-2975.
[60]KIM J C, KIM J J, CHOI J Y, et al. Control of columnar-toequiaxed transition in continuous casting of 16% Cr stainless steel[J]. La Metallurgia Italinans, 2009(9): 43-48.
[61]TAKEUCHI H, MORI H, IKEHARA Y, et al. The effects of electromagnetic stirring on solidification structure of continuously cast SUS340 stainless steel slabs[J]. Transaction of the Iron and Steel Institute of Japan, 1981, 21(2): 109-116.
[62]池成忠, 徐俊波, 陈良贤, 等. 非对称双极脉冲反应磁控溅射制备 TiN/NbN 多层膜[J]. 材料工程, 2012(7): 92-96. CHI C Z, XU J B, CHEN L X, et al. Preparation of TiN/NbN multilayer films by asymmetric bipolar pulse reactive magnetron sputtering[J]. Journal of Materials Engineering, 2012(7): 92-96 (in Chinese).
[63]宁波材料技术与工程研究所. 宁波材料所在 CVD 大块单晶金刚石合成技术方面取得进展[J]. 超硬材料工程,2014(4): 61.Ningbo Institute of Materials Technology and Engineering. Progress of CVD bulk single crystal diamond synthesis technology by ningbo institute of materials technology and engineering[J]. Superhard Material Engineering, 2014(4): 61(in Chinese).
[64]KYOHEI HORITA, HIROMI YOSHIMURA, SYUNSUKE AIKAWA, et al. Micro drilling of printed circuit board with DLC coated drill[C]. 2011 JSPE Autumn Conference, 2011 (in Japanese).
[65]YANG W, KE P L, FANG Y, ZHENG H, et al. Microstructure and properties of duplex (Ti:N)-DLC/MAO coating on magnesium alloy[J]. Applied Surface Science, 2013, 270:519-525.
[66]LI X W, LI L, ZHANG D, et al. Ab initio study of interfacial structure transformation of amorphous carbon catalyzed by Ti, Cr, and W transition layers[J]. ACS Applied Materials & Interfaces, 2017, 9: 41115-41119.
[67] DAMASCENO J C, CAMARGO S S, FREIRE F L, et al. Deposition of Si-DLC films with high hardness, low stress and high deposition rates[J]. Surface & Coatings Technology, 2000, 133: 247-252.
[68]王锐坤. 表面喷丸细晶化对 Super304H 不锈钢晶间腐蚀敏感性和脱敏特性的影响[D]. 广州: 华南理工大学, 2017.WANG R K. Effect of surface grain refining by shot peening on the intergranular corrosion susceptibility and desensitization characteristics of Super304H stainless steel[D]. Guangzhou: South China University of Technology, 2017 (in Chinese).
[69]李钱瑞. 爆破阀拉力螺栓的表面超声冲击强化[D]. 大连:大连理工大学, 2017. LI Q R. The surface strengtheningof explosion valve bolt by ultrasonic impact treatment[D]. Dalian: Dalian University of Technology, 2017 (in Chinese).
[70]王健波, 唐丽娜, 李辰旸. 环形零件局部激光表面淬火[J].金属热处理, 2019, 44(4): 106-108.WANG J B, TANG L N, LI C Y. Local laser surface quenching of annular parts[J]. Heat Treatment of Metals, 2019, 44(4): 106-108 (in Chinese).
[71]唐丽娜, 郭立杰, 张天德. 航天典型材料与构件的热处理技术研究与应用[J]. 金属热处理, 2018, 43(1): 1-5.TANG L N, GUO L J, ZHANG T D. Research and application of heat treatment technology for aerospace materials and components[J]. Heat Treatment of Metals, 2018, 43(1): 1-5 (in Chinese).
[72]高玉魁. 不同表面改性强化处理对 TC4 钛合金表面完整性及疲劳性能的影响[J]. 金属学报, 2016, 52(8): 915-922. GAO Y K. Influence of different surface modification treatments on surface intergrity and fatigue performance of TC4 titanium alloy[J]. ACTA Metallurgica Sinica, 2016, 52(8):915-922 (in Chinese).
[73]唐丽娜, 吴国华. TC4 钛合金等离子体渗氮层组织结构与耐磨性[C]. 上海: 中国航天科技集团公司 2016 年热处理工艺技术中心交流会论文集, 2016: 42-48. TANG L N, WU G H. Microstructure and wear resistance of plasma nitriding layer of TC4 titanium alloy[C]. China Aerospace Science and Technology Corporation, 2016 Proceedings of the Heat Treatment Technology Conference. Shanghai, 2016: 42-48 (in Chinese).
[74]陈宇海. 钛及钛合金脉冲等离子体爆炸表面改性研究[D].南昌: 南昌航空大学, 2019.CHEN Y H. Surface modification of titanium and titanium alloy by pulsed plasma detonation technology[D]. Nanchang: Nanchang Hangkong University, 2019 (in Chinese).
[75]刘洪喜, 蒋业华, 等. TC4 合金表面全方位离子注入 Ag 的耐摩擦磨损和抗腐蚀性能[J]. 稀有金属材料与工程,2009(12): 2127-2130. LIU H X, JIANG Y H et. al Frictional wear resistance and corrosion resistance of Ag/Ti-6Al-4V alloy system treated by plasma immersion ion implantation technique[J]. Rare Metal Materials and Engineering, 2009(12): 2127-2130 (in Chinese).
[76]王宝婷. 钛合金表面微弧氧化强流脉冲电子束复合处理技术[D]. 沈阳: 沈阳理工大学, 2017.WANG B T. Composite treatment of micro-arc oxidation and high current pulsed electron beam on titanium alloy[D]. Shenyang: Shenyang Ligong University, 2017.
[77]张晓琳, 张可敏, 马金鑫, 等. 铝合金表面激光熔覆陶瓷复合涂层研究现状[J]. 热加工工艺, 2016, 45(20): 23-30.ZHANG X L, ZHANG K M, MA J X, et al. Research status of ceramic composite coating on aluminium alloy surface by laser cladding[J]. Hot Working Technology, 2016, 45(20): 23-30 (in Chinese).
[78]李琦, 刘洪喜, 张晓, 等. 铝合金表面激光熔覆 NiCrAl/TiC复合涂层的磨损行为和耐蚀性能[J]. 中国有色金属学报,2014, 24(11): 2805-2812.LI Q, LIU H X, ZHANG X, et al. Wear behavior and corrosion resistance of laser clad NiCrAl/TiC composite coating on aluminum alloy surface[J]. Chinese Journal of Nonferrous Metals, 2014, 24(11): 2805-2812 (in Chinese).
[79]张志超. 铝合金表面激光熔覆 Al2O3 涂层工艺研究[D]. 辽宁: 大连理工大学, 2014.ZHANG Z C. Study on process conditions of laser cladding of Al2O3 coatings on aluminium alloy[D]. Liaoning: Dalian University of Technology, 2014 (in Chinese).
[80]刘俊秀. 铝合金钻杆材料腐蚀机理及表面防护研究[D]. 北京: 中国地质大学 (北京), 2017.LIU J X. Research on corrosion mechanism and surface protection of aluminum alloy drill pipe materials[D]. Beijing: China University of Geosciences (Beijing), 2017 (in Chinese).
[81]文磊. LY12CZ 铝合金表面纳米化-微弧氧化复合改性层组织结构与性能[D]. 哈尔滨: 哈尔滨工业大学, 2011. WEN L. Microstructure and properties of LY12CZ aluminum alloy surface nano-micro arc oxidation composite modified layer[D]. Harbin: Harbin Institute of Technology, 2011 (in Chinese).
[82]徐滨士. 表面工程与维修[M]. 北京:机械工业出版社, 1996. XU B S. Surface engineering and maintenance[M]. Beijing: China Machine Press, 1996 (in Chinese).
[83]WANG H D, MA G Z, XU BS, et al. Design and application of friction pair surface modification coating for remanufacturing[J]. Friction, 2017, 5(3): 351-360.
[84]徐滨士, 马世宁, 刘家浚. 我国设备维修表面工程的发展[J]. 设备管理与维修, 1998(2): 16-19.XU B S, MA S N, LIU J J. The development of equipment maintenance surface engineering in China[J]. Equipment Management and Maintenance, 1998(2): 16-19 (in Chinese).
[85]徐滨士, 梁秀兵. 发展高技术维修, 建设“预知维修”方式[C]. 中国机械工程学会 2003 年年会论文集: 426-428.XU B S, LIANG X B. Development high-tech maintenance and construct predicted maintenance[C]. Proceedings of Annual meeting of Chinese Mechanical Engineering Society, 2003, 426-428 (in Chinese).
[86]徐滨士. 扩大军地交流,共同促进维修事业发展[J]. 中国设备工程, 1992, 4: 4-5.XU B S. Expand military-to-societycommunications and jointly promote the development of repair and maintenance[J]. China Plant Engineering, 1992, 4: 4-5 (in Chinese).
[87]徐滨士. 徐滨士院士教学、科研文选[M]. 北京:化学工业出版社, 2010.XU B S. Selection from Academician Xu bin-shi’s Achievements[M]. Beijing: Chemical Industry Press, 2010 (in Chinese).
[88]XU B S, WANG H D, MA G Z. Advanced surface engineering technologies for remanufacturing forming[J]. Rare Metal Materials and Engineering, 2012, 41(S1): 001-005.
[89] 徐滨士. 再制造与循环经济[M]. 北京: 科学出版社, 2007. XU B S. Remanufacture and recycling economy[M]. Beijing: Science Press, 2007(in Chinese).
[90]徐滨士. 新时代中国特色再制造的创新发展[J]. 中国表面工程, 2018, 31(1): 1-6.XU B S. Innovation and development of remanufacturing with Chinese characteristics for a new era[J]. China Surface Engineering, 2018, 31(1): 1-6 (in Chinese).
[91]DONG L H, XU B S, DONG S Y, et al. Stress dependence of the spontaneous stray field signals of ferromagnetic steel[J]. NDT & E International, 2009, 42(4): 323-327.
[92]王海斗, 何鹏飞, 陈书赢, 等. 内孔热喷涂技术的研究现状与展望[J]. 中国表面工程, 2018, 31(5): 14-38.WANGHD, HE P F, CHEN S Y, et al. Research and prospect on internal thermal spraying techniques[J]. China Surfac eEngineering, 2018, 31(5): 14-38 (in Chinese).
[93]XING Z G, WANG H D, XU B S, et al. Structural integrity and ferroelectric-piezoelectric properties of PbTiO3 coating prepared via supersonic plasma spraying[J]. Materials & Design, 2014, 62: 57-63.
[94]徐滨士, 刘世参, 史佩京. 再制造工程的发展及推进产业化中的前沿问题[J]. 中国表面工程, 2008, 21(1): 1-5.XU B S, LIU S C, SHI P J. The frontier issues of development and industrialization of remanufacturing engineering[J]. China Surface Engineering, 2008, 21(1): 1-5 (in Chinese).[94]
来源:中国表面工程