点击蓝字 · 关注我们
随着全球水资源短缺问题的不断加剧,高效水处理技术愈发重要。其中,作为一种高效的水处理方法,太阳能驱动的界面蒸发可以直接将海水、废水等转化为可用的淡水,同时节约能源和降低成本。近年来,多孔金属、水凝胶和生物材料等各种材料被开发和应用于界面蒸发,但仍面临能量损失高、水输运不足、力学性能差、制备过程复杂等问题。此外,界面蒸发一般采用亲、疏水材料来构筑双层蒸发器,需要多种材料配合使用。如果使用单一材料就可满足蒸发器所需润湿性能的要求,将有利于简化制备流程并推广其应用。受蛋白质自组装结构调控润湿性启发,本工作采用乙烯基三甲氧基硅烷作为单一前驱体,与细菌纤维素(BC)纤维网络杂化,通过控制组装路径,制备了润湿性可调的弹性纤维气凝胶,并将其集成为双层蒸发器用于海水淡化。这种气凝胶蒸发器具有高蒸发速率(一个太阳下1.91 kg m⁻² h⁻¹(室内);4.20 kg m⁻² h⁻¹(室外))、结构稳定性以及出色的耐盐性,在水处理领域展现出广阔的应用前景。
Fibrous Aerogels with Tunable Superwettability for High-Performance Solar-driven Interfacial Evaporation
Chengjian Xu, Mengyue Gao, Xiaoxiao Yu, Junyan Zhang, Yanhua Cheng,* Meifang Zhu*
Nano-Micro Letters (2023)15: 64
https://doi.org/10.1007/s40820-023-01034-4
本文亮点
1. 基于单一分子单元/前驱体(乙烯基三甲氧基硅烷)制备了具有润湿性可调的杂化纤维气凝胶。
2. 双层蒸发器具有稳定的界面结合能力,在压缩、搅拌、超声等条件下结构均能保持稳定。
内容简介
图文导读
杂化纤维气凝胶的制备流程如图1所示。聚合前后的乙烯基三甲氧基硅烷通过水解分别转化为硅溶胶,加入纤维素分散液后通过定向冷冻及干燥,获得具有超疏水或超亲水的纤维气凝胶。润湿性差异来源于聚硅氧烷在纤维素表面不同的组装结构。
图3. 可调控润湿性的机制分析和荧光可视化技术 (a) PVSQ/PVPSQ和BC纳米纤维之间相互作用的分子动力学模拟示意图;(b) BC纳米纤维表面聚硅氧烷的分子取向结构示意图;(c) PVSQ/PVPSQ与BC纳米纤维碳原子之间的径向距离(r)的分布;(d) 当r分别为0.5 nm、1.0 nm和1.5 nm时,PVSQ和PVPSQ的碳原子分布比例;(e-f) 气凝胶的内部和整体润湿性的荧光可视化。
IV 用于太阳能驱动界面蒸发的双层气凝胶
图4. 太阳能驱动的界面蒸发双层气凝胶 (a) 双层气凝胶制备流程图;(b)(上)伞状PNFs-PPy的示意图,(下)PNFs的快速水输运性质;(c-d) PNFs-PPy 吸收光谱及热红外成像照片;(e) VNFs多孔隔热层的示意图;(f) 双层蒸发器和单层PNFs-PPy在一个太阳光下照射60分钟的热红外成像照片;(g) 蒸发器的热损失图。
V 双层蒸发器界面性能
双层结构的界面连接强度对其整体的稳定性具有重要影响。采用单一前驱体构筑纤维杂化气凝胶,界面处存在连续的纤维网络结构(SEM);并证实PVSQ与PVPSQ网络存在化学交联(²⁹SiNMR)。网络间的物理缠结与化学交联赋予了双层蒸发器稳定的界面,提升了双层结构蒸发器的机械性能。
图5. 双层蒸发器的界面稳定性 (a)蒸发器界面示意图;(b)界面区域SEM图像;(c)聚硅氧烷在界面区、化学键合PVSQ-PVPSQ、物理共混PVSQ和PVPSQ的²⁹Si NMR谱图;(d)压缩应变分别为30%、60%、80%时蒸发器的应力-应变曲线;(e)最大应力和能量损失系数随压缩循环次数的变化;(f)蒸发器在平面和弯折状态下的热红外照片。
VI 高性能太阳能界面蒸发
通过调控亲水气凝胶与疏水气凝胶的厚度,研究双层蒸发器的界面蒸发性能,发现双层水蒸发器的平均水分蒸发率可达1.91 kg m⁻² h⁻¹;特别值得强调的是,在户外实验中由于风力的作用,蒸发速率峰值可达4.20 kg m⁻² h⁻¹。蒸发冷却后收集到的淡水盐度远低于世界卫生组织(WHO)确定的饮用水标准(低盐度水利于人体健康)。
图6. 高性能界面蒸发 (a)双层蒸发器示意图;(b)在1个太阳光下,海水、单层PNFs-PPy和双层蒸发器作用下,水蒸发质量随时间的变化;(c)双层气凝胶蒸发器蒸发速率和效率对比;(d)户外蒸发装置照片;(e)蒸发前后的水中四种主要离子的浓度变化情况;(f)蒸发器的循环稳定性验证;(g)室外界面蒸发测试。
VII 双层蒸发器高效耐盐
耐盐性是蒸发器长期使用的一项重要指标,在该双层气凝胶蒸发器中,因为上层多孔气凝胶的高亲水特性,盐离子可以在亲水气凝胶内部进行有效的离子交换从而使其从高浓度交换到低浓度中,保证蒸发器的正常工作。在120小时连续光照后,蒸发器表面没有发生盐沉积情况(图7a)。即使在高盐度(20 wt%)的盐水蒸发过程中,盐晶体也只在蒸发器的边缘聚集,且能在无光照条件下,进行离子交换实现自清洁。
图7. 双层蒸发器耐盐性能 (a)蒸发器120小时连续耐盐实验;(b) 在极端pH值和高盐度下的蒸发性能测试;(c)蒸发器耐盐-盐扩散工作机制;(d)无光照条件下,蒸发器表面自清洁特性。
作者简介
本文第一作者
本文通讯作者
▍主要研究成果
▍Email:cyh@dhu.edu.cn
本文通讯作者
▍主要研究成果
▍Email:zmf@dhu.edu.cn
撰稿:原文作者
关于我们
Tel: 021-34207624
扫描上方二维码关注我们