隧道工程
1
基于松动圈理论的软岩大变形隧道锚杆支护优化研究
在高地应力软岩区修建隧道时,由于软岩自身强度低、膨胀性强,又受高地应力挤压,若施工措施不当易发生软岩大变形,给工程建设带来巨大困难。根据围岩松动圈理论,采用统一强度准则,考虑中间主应力的影响,分析围岩应力状态,得到适用于软岩大变形隧道围岩松动圈半径计算公式。对安岚高速谢家坡隧道围岩进行弹塑性分析发现,软岩大变形隧道围岩松动圈沿横断面分布并不均匀,呈边墙大拱顶小的趋势,且随大变形级别的升高和支护反力的减小而增大。结合现场测试得到Ⅱ级大变形松动圈厚度拱顶处为6.5~7.0 m,边墙处为7.0~7.5 m;Ⅲ级大变形松动圈厚度拱顶处为7.5~8.0 m,边墙处为8.0~8.5 m,并以松动圈厚度为依据优化系统锚杆长度。对优化段监测可见,围岩变形显著减小,稳定性有效提高。
隧道;锚杆支护;围岩松动圈;统一强度准则;中间主应力
2
不同大变形等级下层理角度对层状软岩隧道的影响
为探究不同大变形等级下层理角度对层状软岩隧道的影响,依托九绵高速全线软岩大变形隧道,通过岩石力学试验确定遍布节理模型参数,基于数值模拟,探究不同软岩大变形等级(轻微、中等、强烈)下层理角度对层状软岩大变形隧道围岩及支护体系受力变形的影响,并通过现场统计的层理角度与大变形情况对数值模拟结果进行验证。结果表明:1)层理小角度(0°、15°)与大角度(90°)围岩变形、支护结构受力变形较大,随着大变形等级的增大,层理角度引起的围岩支护变化效果越明显。2)随着层理角度的增大,围岩变形从拱底逐渐转移到右拱腰。围岩变形主要发生在隧道轮廓与层理面相切位置,其中拱底及左拱脚对层理角度变化较敏感。3)初支应力偏向及节理塑性区大致与层理弱面法向一致,随着层理角度的增大,节理的剪切塑性区由拱顶、拱底转移到左拱脚、右拱肩,最终偏移到左右拱腰上下位置;相比初支压应力,初支拉应力对层理角度更敏感,垂直节理增大了张拉剪切破坏塑性区贯通的风险,但剪切破坏塑性区半径反而有可能减小。4)现场的统计规律表现为小角度与大角度大变形等级较高,层理角度为60°以下时,岩层破坏发生在拱腰及拱肩处,随着层理角度的增大,有向拱肩发展的趋势,大角度层理时岩层破坏主要发生在拱腰处。
层状软岩隧道;大变形等级;层理角度;遍布节理模型;数值分析;现场实测
3
南京江底盾构施工废弃砂土在同步注浆中再利用的适用性
依托南京长江新济洲供水廊道项目泥水盾构工程,针对江底粉细砂地层和岩石地层中泥水盾构施工产生的废弃砂土,研究其在盾构同步注浆材料中再利用的适用性。通过改变砂土地层弃砂的粒径分布,研究其对砂浆性能的影响;针对岩石地层产生的废弃砂土,研究其颗粒形状对砂浆性能的影响,并对岩层弃砂制备同步砂浆进行配比优化。结果表明:该工程砂土层弃砂可直接代替原配比中的砂进行再利用,岩层弃砂通过调整配比亦能满足工程要求;增大砂层弃砂细度模数和砂粒含量可改善砂浆的流动性,但砂土黏粒含量过大会使砂浆流动性变差、凝结时间缩短、强度降低;岩层弃砂颗粒表面越粗糙,所制备砂浆流动性越差,凝结时间越短。合适配比下,盾构施工废弃砂土可应用于同步注浆,砂浆配比应随废弃砂土粒径分布和颗粒形状的变化做出适当调整。
泥水盾构;废弃砂土;岩层弃砂;同步注浆;资源化利用
4
机器学习方法在盾构隧道工程中的应用研究现状与展望
随着盾构隧道工程信息化水平的提升,隧道掘进设备作业过程监测技术日益完善,记录的工程数据蕴含了掘进设备内部信息及其与外部地层的相互作用关系。机器学习因其数据分析能力强,无需先验的理论公式和专家知识,相较于传统的建模统计分析方法具有更大的应用空间。通过机器学习方法对收集的信息与数据进行深度挖掘并分析其内在联系,有助于提升盾构隧道工程建设的效率和安全保障水平。简述机器学习方法的基本原理,总结和分析机器学习方法在盾构工程中的应用研究状况,综述基于机器学习的盾构设备状态分析、盾构设备性能预测、围岩参数反演、地表变形预测和隧道病害诊断等5个方面的进展,并分析当前研究的不足。最后,分析盾构隧道工程向智能化方向发展需重点攻克的难题。
盾构隧道;机器学习;隧道施工;大数据;人工智能
5
粉细砂地层双线盾构施工实测地表沉降规律分析与预测
依托南通地铁二号线某区间盾构隧道施工,针对盾构穿越典型粉细砂地层条件,对双线盾构隧道施工引起的地表沉降开展现场测试和规律分析,对经典Peck公式在南通地区粉细砂地层中双线盾构施工的适用性进行探讨,并研究先行线和后行线土体损失率和地表沉降槽宽度系数的取值及影响因素。研究结果表明,在粉细砂地层中,后行线隧道施工对地层的二次扰动效应会引起先行线轴线上方地表沉降的显著增加,且二次扰动效应明显强于其他软土地层,但弱于砂土地层;相较于淤泥质土地层,在粉细砂地层中盾构停机对地表沉降的影响更为显著;先行线和后行线施工引起土体损失率比值η1/η2在1~5倍范围内,平均值为2.3,先行线和后行线地表沉降槽宽度系数比值K1/K2在1~2倍范围内,平均值为1.4;砂土、粉细砂和粉土地层中土体损失率比值η1/η2均大于1,η1/η2和K1/K2与隧道覆土深度比(H/D)相关性较弱。
粉细砂地层;双线盾构;地表沉降;土体损失率;沉降槽宽度系数
6
倾斜煤系地层大断面客专隧道大变形原因分析及处置
针对沪昆铁路刘家庄隧道穿越煤系地层施工中发生的大变形现象,基于理论分析、数值模拟和现场监测方法,分析隧道发生大变形的原因,推导并验证了产生大变形的起始位置,得到了掌子面上方煤层单元体沿倾斜面方向的应力状态与隧道进入含倾斜煤系地层水平距离之间的变化规律,对倾斜煤层单元体与初期支护结构的应力与变形进行了分析。结果表明:掌子面上方煤体单元应力状态变化随掌子面进入倾斜煤层下方水平距离的增加,围岩经历挤压、压剪和剪切滑移3个变形阶段。围岩大变形与初期支护结构破坏均发生在剪切滑移阶段的初期,应在压剪变形阶段结合现场监测数据对掌子面进行喷射混凝土封闭、注浆加固掌子面上方松散煤层和加强初期支护结构刚度等措施以预防隧道产生大变形。
隧道工程;煤系地层;围岩大变形;破坏机理;数值模拟
END
土木与环境工程学报
ID :j_caee
长按二维码关注我们