离散元模拟最新研究进展

文摘   2024-09-23 17:45   澳大利亚  

点击上方蓝字了解更多计算与STEM领域研究前沿



文一:

颗粒流中热量产生和传递的高效离散元建模:验证和应用

摘要:

这项工作提出了一种有效的离散元法(DEM)框架,用于模拟颗粒介质的热行为。主要关注的是持久的颗粒流,涉及机械能量耗散引起的传热和产生。所提出的方法使用有效的策略来降低分析的计算成本,从而使其能够应用于实际相关的问题。例如,调整接触面积以补偿DEM中通常考虑的人工材料软化,从而增加时间步长。经过扩展验证,该方法被应用于模拟实验转鼓的不同设置。数值模拟与实验结果吻合良好,并允许对热量产生的机制和模式进行详细分析,这是无法从实验活动中推断出来的。

图:筒仓排放,通过能量耗散产生热量。

图:筒仓卸料过程中积聚的热量产生机制图。

图:转鼓中不同时间的颗粒温度。

图:旋转滚筒中颗粒-颗粒相互作用积累的产热机制图。

文二:

各向异性强度边坡的稳定性和破坏模式:离散元模型的见解

摘要:

本文研究了边坡稳定性与脆性岩石材料组构各向异性之间的关系及其对景观塑造的影响。我们使用离散元模型来研究由横向各向同性岩石材料制成的边坡的稳定性和破坏模式,更特别地关注材料相对于地形边坡的取向的影响。在各向同性材料的情况下,用极限平衡解析解验证了数值方法后,我们修改了我们的数值斜率模型,以模拟各向异性片麻岩的流变特征。对横向各向同性平面二维方向(倾角)的系统探索表明,边坡坍塌需要高度依赖于材料相对于边坡方向的强度值。对于1000米高的悬崖,具有固定坡度的斜坡的稳定性需要强度,在各向同性平面比地形坡度稍微倾斜的配置(即碎裂超陡配置)中,强度比各向同性平面垂直于斜坡的配置(如直线配置)高一个数量级。根据材料的相对方向,反映这种高度可变的稳定性,观察到四种变形或重力不稳定模式:按外观顺序,当横向各向同性平面方向相对于水平方向从0到180°(从碎裂配置到直线配置)时,边坡分别通过滑动、屈曲、倾倒和崩塌而坍塌。碎裂模式对应于一种非常稳定的配置,与导致滑动和倾倒的结构控制的深层变形模式相比,首选的地面运动将是悬崖上的岩石坠落。尽管数值方法固有的简化,但我们的研究强调了沿横向各向同性材料切割的边坡发生的滑坡的基本特征,并再现了在自然边坡中观察到的各种不稳定模式。它还可以评估它们各自的动力学以及它们动员的材料体积。最后,通过比较我们在喜马拉雅山脉中部(尼泊尔)观测到的山坡坡度方位角变化的发现,在片麻状和云母片岩地层各向异性方向相对均匀的地区,我们表明,即使多种环境因素发挥作用,景观塑造确实受到材料各向异性的强烈控制。

图:a)DEM组件中普通键的选择(1)和重新定向(2)为优先取向的弱键,以产生出现的横向各向同性行为;b) 用于校准DEM模型的单轴测试模拟;c) 模型预测与实验观测的比较。

图:破坏前最具代表性的边坡模型内的应力分布。

文三:

JLU-H月球高原模拟器的离散元建模

摘要:

为了准确模拟机器与月球土壤模拟物的相互作用,本研究将物理和模拟实验相结合,对JLU-H月球高地模拟物的离散元模拟参数进行了校准。首先,通过物理试验确定了JLU-H的固有参数和真实休止角,为后续的模拟试验提供数据。Plackett-Burman试验旨在识别和选择对休止角有显著影响的参数。然后使用最陡爬升试验优化了重要参数的值范围。然后利用Box-Behnken测试进行校准并获得最佳参数组合。最后,使用校准的DEM参数对休止角进行了验证测试。仿真结果与试验结果的相对误差为1.54%。然后进行了进一步的直剪试验,以验证DEM参数的准确性和有效性。结果表明,标定参数可为月球土壤模拟离散元模拟参数的选择以及月球探测钻探和挖掘机械的设计和优化提供参考。

图:将实验室测试映射到与月球土壤模拟物相互作用的不同机器类型。

图:起升油缸试验。

图:月球土壤模拟休止角的模拟实验过程。

图:JLU-H休止角形状的模拟试验和物理试验比较:(a)模拟试验,(b)物理试验。

文四:

使用改进的离散元模型评估烧结多孔材料的有效导热系数

摘要:

这项工作旨在修改和应用原始离散元模型(DEM)来评估烧结多孔材料的有效导热系数。该模型基于双颗粒烧结几何,使用恒体积(CV)标准计算颗粒间颈。该模型通过烧结多孔NiAl的实验测量进行了验证。对于DEM模拟,通过热压模拟获得了具有真实粒径分布和不同密度的非均质样品。比较了使用Coble和CV模型评估的颈部大小,表明常用的Coble模型高估了颈部大小和电导率。通过颈部尺寸校正来补偿较高密度下的非物理重叠,并通过添加晶界阻力来解释颈部内的孔隙率,从而改进了所提出的模型。晶界的电阻贡献随着密度的增加而降低。改进模型得到的热导率与实验结果接近,表明模型的有效性。

图:NiAl粒度分布具有累积分布。

图:不同孔隙率的断裂多孔样品的SEM图像:(a)21.6%,(b)16.4%,(c)10.6%,(d)5%。

图:DEM热压模拟的温度和压力分布以及检索到的样品的密度点。

图:不同致密化下Coble和定容模型颈部尺寸分布的比较。

图:有效导热系数图,作为晶界厚度及其导热系数折减系数的函数。

文五:

基于物理信息的圆柱链带隙工程离散元建模

摘要:

我们提出了一种有效的方法来构建一个简单的离散元模型(DEM),该模型可以精确地模拟连续梁的振荡。DEM基于细长圆柱形构件的Timoshenko梁理论及其相应的装配波动力学。这一物理信息为DEM解释了构成梁单元在宽频率范围内的多种振动模式。我们构建了各种模拟圆柱链的DEM,并将其波动力学与实验中测量的波动力学进行了比较,以验证所提出的方法。此外,我们构建了一个细长圆柱体的分级木桩链。我们通过实验和数值研究了系统的频带隙,并证明了通过连续叠加不同长度圆柱体产生的多个阻带来构建宽带隙的可能性。该系统通过利用圆柱体局部共振产生的隔振效应,在阻断传播波方面非常有效。所提出的DEM方法可用于高效准确地研究和设计复杂的振动系统。此外,操纵带隙的设计方法可用于开发振动滤波器和冲击缓解装置。

图:(a) 一维分级圆柱链的实验装置。(b) 示出信号采集过程和具有致动器和力传感器的链结构的布置的示意图。

图:描述使用所提出的物理信息分析方法模拟光束振荡构建DEM的流程图。(a) 周期系统,表示作为初始假设的圆柱体链。(b) 连续体模型表示具有边界条件的连续体晶胞,使梁理论的应用成为可能。(c) 离散元模型表示由具有质量单位单元的质量及其相应运动方程组成的DEM链。下图说明了DEM的参数是通过结合从连续波束理论获得的特征频率和从DEM导出的色散关系来确定的。

图:(a) DEM中局部共振引起的隔振示意图(顶部)和圆柱梁的相应振动示意图(底部)。根据(c)FEM和(d)DEM的实验和模拟结果测量的分级圆柱链频谱的图像图(b)。(b)中的插图说明了在实验中使用LDV测量每个气缸的振动。此外,(c)中带圆圈的线表示从解析梁理论获得的每个圆柱体中的(奇数,对称)局部共振频率。


如果你觉得此文对你有帮助,请点赞,谢谢!


计算机技术在科学&技术&工程&数学中得到了广泛的应用,力学方面,计算机技术成为了科学的第四次革命性技术,现在基于计算机的数据科学已经逐步成为力学等其他科学发现的第四范式。人工智能、大数据、数字孪生等概念已经逐步成为当今时代的主题。智能制造、智能算法、数据驱动力学、大语言模型、自动驾驶在当今社会展现出巨大潜力,吸引了大量的研究人员。同时高性能显卡和多核中央处理器的出现为大规模数值模型的高性能计算提供了强大算力。公众号为力学相关行业的爱好者、教育人士和从业者提供一个平台,希望能通过自己对前沿研究、技术培训和知识、经验的整理、分享带给相关读者一些启发和帮助。

STEM与计算机方法

扫一扫二维码关注本公众号

STEM与计算机方法
不定期更新各种前沿的科学技术和方法,最新的学界和工业界的资讯,分享计算机、数学、物理的方法在各个学科中的应用,不定期转发相关的会议内容,链接和开源代码。
 最新文章