有限元仿真是一种数值计算技术,用于解决复杂工程和物理问题。它将一个复杂的物理问题划分为许多小的、简单的部分(称为有限元),然后在这些小部分上进行计算,以预测整体行为。常用于结构分析、热传导、流体动力学等领域。深度学习是一种基于神经网络的机器学习技术,通过对大量数据进行训练来学习模式和规律。深度学习在有限元仿真中的应用主要体现在以下几个方面:
计算需求和效率:
计算资源:传统的有限元分析(FEA)通常需要大量的计算资源,尤其是在处理高复杂度或大规模问题时。深度学习技术,尤其是深度神经网络(DNN),可以通过学习和预测模型结果,显著减少计算时间和资源消耗。
加速仿真:深度学习模型可以用来训练代理模型,快速预测仿真结果,从而减少对详细有限元仿真的需求。例如,使用神经网络进行快速预测,以替代计算密集型的有限元计算。
数据驱动的建模:
数据生成:在有限元仿真中,尤其是在复杂非线性或多物理场问题中,通常需要大量的数据进行训练和验证。深度学习方法可以从大量的仿真数据中学习和提取模式,帮助改进模型的精度和可靠性。
特征提取:深度学习模型能够从数据中自动提取特征,这对于复杂问题尤其重要。例如,卷积神经网络(CNN)可以在处理图像数据时提取复杂的特征,进而用于预测结构的行为。
模型简化和降阶:
降阶建模:在有限元分析中,降阶模型(Reduced Order Models)可以降低计算复杂性。深度学习可以用于创建降阶模型,这些模型能够在保持准确性的同时,显著降低计算开销。
近似模型:深度学习可以用来构建近似模型,通过训练网络来逼近复杂的有限元模型行为,从而提高仿真的效率。
处理复杂非线性和多物理场问题:
非线性问题:有限元分析在处理强非线性问题时可能面临挑战,深度学习模型能够捕捉复杂的非线性关系,例如在材料塑性或结构大变形问题中的应用。
多物理场耦合:在多物理场问题中,如热-结构耦合,深度学习可以通过联合学习不同物理场之间的关系,提升仿真模型的准确性和效率。
自动化和优化:
设计优化:深度学习可以用于优化设计参数,通过训练模型以寻找最优设计方案,减少手动调整的需要。
自动化分析:深度学习可以自动化有限元分析的各个环节,包括网格生成、材料属性调整和结果评估等。
综上所述,深度学习为有限元仿真领域带来了显著的创新,提升了仿真过程的效率、精度和智能化水平,为工程设计和科学研究提供了新的工具和方法。由于学习平台文献、视频教程资料较少,技术不公开,对于有相应科研任务和发高质量文章的科 研人员极度困扰,而培训学习迫在眉睫,应广大科研人员要求,本单位经过数月调研,决定联合 专家共同举办“深度学习有限元仿真”专题培训班。
主讲老师来自国内TOP高校,计算力学研究方向,熟悉有限元方法和求解算法,发表计力学领域SCI和人工智能顶级会议发表多篇论文。参与过多项与高校或研究所的结构仿真项目,拥有丰富的力学仿真经验。
机器学习基础
o机器学习的定义、分类和发展历程。
o机器学习的基本概念,如数据、模型、训练、预测等。
o常见的机器学习算法,如神经网络、决策树、支持向量机等。
2.机器学习在结构仿真中的应用概述
o机器学习在结构仿真中的应用背景和意义。
o应用领域介绍,包括结构设计优化、结构健康监测、材料性能预测等。
o机器学习在结构仿真中应用的挑战和解决方案。
3.机器学习在结构设计优化中的应用
o基于机器学习的拓扑优化方法。
o机器学习在尺寸优化和形状优化中的应用。
o案例分析:展示机器学习在结构设计优化中的实际应用。
4.机器学习在材料性能预测中的应用
o材料性能预测的重要性和挑战。
o机器学习在材料本构模型建立中的应用。
o机器学习在材料微观结构与性能关系研究中的应用。
o案例分析:通过具体材料性能预测的例子,说明机器学习的应用效果。
5.深度学习在结构仿真中的应用
o深度学习的基本概念和常见架构,如卷积神经网络、循环神经网络等。
o深度学习在结构仿真中的具体应用,如结构响应预测、复杂物理现象模拟等。
o案例分析:介绍深度学习在结构仿真中的成功应用案例。
6.课程总结与展望
o总结机器学习在结构仿真中的应用现状和发展趋势。
o讨论机器学习在结构仿真中应用的未来方向和潜在挑战。
o对学生的学习成果进行总结和评价。
培训背景:
传统基于数据驱动的材料本构模型依赖大量的应力 - 应变数据,且大多基于监督学习,忽略了物理规律,导致模型的泛化性和可解释性有限。本文提出了一种基于无监督学习的神经网络(NN - EUCLID),仅使用位移、应变和外部作用力等易于测量的数据进行训练,能够在不知道应力的情况下学习超弹性材料的本构行为。
培训内容:
框架结构:提出了基于平衡卷积神经网络(ECNN)的本构建模框架,包括用于生成多轴应力 - 应变曲线数据集的 XFEM 模型、描述系统的图网络表示、计算最近邻集的公式以及空间消息传递过程。
数据集生成:使用 XFEM 模型生成二维断裂力学模拟的数据集,包括不同数量微裂纹(5 至 19 条)的随机位置和取向的模拟,共 960 次模拟,其中 90% 用于训练集,10% 用于验证集。
GNN 结构:包括四个 GNN, - GNN 和 - GNN 分别预测 Mode - I 和 Mode - II 应力强度因子,Class - GNN 预测微裂纹的传播与非传播,CProp - GNN 预测裂纹尖端的未来位置。
训练和验证:对 GNN 进行交叉验证,调整学习率、消息传递步骤和影响半径等参数,以优化模型性能。
预测能力:NN - EUCLID 能够准确预测局部应力、微裂纹传播、合并以及相应的应力分布,对不同初始微裂纹数量(5 至 19 条)的情况都有较好的预测能力。
误差分析:在预测微裂纹长度增长、最终裂纹路径和有效应力强度因子方面,NN - EUCLID 的误差较小,且明显优于其他基线模型。
计算效率:与 XFEM 相比,NN - EUCLID 在计算速度上有显著优势,可达到 6 - 25 倍的加速。
通过本天培训可以掌握:
掌握超弹性本构模型的基本概念,包括应变能密度、第一 Piola - Kirchhoff 应力和切线模量的定义及推导。
理解物理和热力学约束在超弹性本构模型中的重要性,如材料的客观性、稳定性和无应力参考构型等。
学习输入凸神经网络(ICNN)的结构和原理,以及它在保证材料稳定性和凸性方面的作用。
了解无监督深度学习超弹性本构定律的方法,包括如何从点数据近似位移场、构建基于 ICNN 的本构模型以及进行无监督学习。
学习如何生成用于训练的合成数据,包括模拟实验、添加噪声和数据处理的方法。
通过数值基准实验,学习如何评估 ICNN 基构模型的准确性、泛化能力和在有限元模拟中的部署效果。
培训背景和目的:
传统基于数据驱动的材料本构模型依赖大量的应力 - 应变曲线数据进行训练和验证,但获取这些数据通常很困难,因为应力难以直接测量,且大多数方法基于监督学习,忽略了物理规律,导致模型的泛化性和可解释性有限。
近年来,人工神经网络(ANNs)在力学问题中有广泛应用,卷积神经网络(CNNs)在图像识别和力学领域也有应用。一些研究使用 ANNs 建立材料的应力 - 应变本构关系,但存在泛化性和可解释性的问题。此外,在机器学习的本构模型中,需要大量的多轴应力 - 应变曲线数据,但实验获取这些数据成本高昂,数值测试也有局限性。
培训内容:
提出 ECNN 框架:用于超弹性材料的本构建模,包括生成多轴应力 - 应变曲线数据集的方案和通过训练神经网络来识别本构模型的方法。该框架仅使用易于测量的位移、应变和外部作用力作为输入数据,将难以测量的应力视为内部变量,并将平衡方程作为约束嵌入到 ECNN 的架构中,使 ECNN 能够从非均匀变形的单个试样中生成大量训练数据,并通过训练得到应力与应变的关系,从而作为本构模型使用。
构建 ECNN 结构:平衡约束和损失函数,内部变量应满足平衡方程,通过输出节点力并基于平衡条件和损失函数的最小化来确定层的权重,从而使内部变量具有应力分量的物理意义。损失函数由两部分组成,分别表示内部节点力的平衡和位移边界上外部力的平衡。
数据生成:使用二维有限元(FE)模型对双轴加载的带中心孔的正方形板进行模拟,生成应变场数据,模拟采用多项式形式的应变能势,通过 ABAQUS 软件进行有限元模拟,仅使用节点位移(或等效应变)和外部作用力来训练 ECNN,FEM 计算的应力用于评估 ECNN 的预测结果。
训练 ECNN:应力作为满足平衡方程约束的内部变量,训练基于应变和外部作用力进行,ECNN 是无监督的,不需要将数据分为训练集和验证集。通过研究映射和分组卷积参数对训练误差的影响,确定合适的参数组合,并进行多次重复训练以消除随机初始化的影响。
验证 ECNN:通过替换圆形孔为倾斜椭圆形孔,验证 ECNN 对不同结构的应力预测能力;通过模拟单元素的三种基本变形(单轴加载、等双轴加载和简单剪切),验证 ECNN 的泛化能力;通过使用替代的 Mooney - Rivlin 材料,验证 ECNN 对特定超弹性材料的不局限性。
噪声鲁棒性测试:向训练数据中添加满足正态分布的不同水平的人工噪声,以测试 ECNN 对噪声的鲁棒性。
实验验证:制造两个超弹性软橡胶材料的试样,进行位移控制的单轴压缩试验,通过数字图像相关(DIC)方法获取变形信息,并将其用于 ECNN,验证 ECNN 在实际实验中的可靠性。
通过本天培训可以掌握:
o了解机器学习在材料本构模型中的应用现状,包括数据驱动计算方法、知识信息算法等。
o认识到人工神经网络(ANNs)在非线性拟合和预测方面的强大能力,以及卷积神经网络(CNNs)在图像识别和力学领域的应用。
o明确传统机器学习本构模型中数据获取的困难,以及现有模型在泛化和可解释性方面的问题。
o掌握基于平衡的卷积神经网络(ECNN)的基本框架,用于超弹性材料的本构建模。
o理解 ECNN 中应变和外力作为输入,应力作为内部变量的处理方式,以及平衡方程作为约束的嵌入方式。
o学习 ECNN 的结构,包括卷积神经网络部分和全连接层,以及组卷积的作用。
培训背景:
预测工程材料中裂纹的起始、传播、合并和最终材料失效对于评估材料性能至关重要,但高保真模拟技术成本高昂且计算资源密集,尤其是在模拟多个微裂纹相互作用时。
减少阶建模技术为解决这一问题提供了一种有前途的方法,机器学习(ML)技术可用于开发此类模型,但预测具有不同初始微裂纹数量的动态裂纹传播和应力演化的相关研究尚未充分开展。
培训内容:
XFEM 模型:使用开源的 XFEM 模型来生成训练和验证数据集,该模型能够模拟脆性材料中多个裂纹的任意取向传播,并能应用各种裂纹生长准则。
图网络表示:将系统描述为⟨V, E⟩,其中 V 表示所有裂纹尖端的顶点,E 表示图中的所有边。定义了裂纹尖端顶点在先前时间步的表示、边的表示以及最近邻集的计算方法。通过空间消息传递过程来学习顶点、边和最近邻之间的潜在空间关系。
Microcrack - GNN 框架:由四个 GNN 组成,分别为 - GNN、 - GNN、Class - GNN 和 CProp - GNN。- GNN 和 - GNN 分别预测 Mode - I 和 Mode - II 应力强度因子,Class - GNN 预测微裂纹的传播与非传播,CProp - GNN 预测裂纹尖端的未来位置。
训练和验证:进行交叉验证,调整学习率、消息传递步骤和影响半径等参数,以优化模型性能。通过与 XFEM 模拟结果对比,评估 Microcrack - GNN 预测微裂纹传播、合并、微裂纹长度增长、最终裂纹路径、有效应力强度因子的能力,并与两个基线网络进行性能比较。
理论方法:
XFEM - based model:介绍用于生成数据集的 XFEM 模型,包括其功能、适用范围及计算应力强度因子的方法。
Graph network representation:描述 GNN 模型中系统的图网络表示,包括顶点、边的定义,最近邻集的生成以及空间消息传递过程。
Simulations set - up:说明训练集、验证集和测试集的生成过程,包括问题设定、材料参数、加载条件等,以及处理不同数量微裂纹的方法。
Microcrack - GNN 框架:
K₁ - GNN:用于预测 Mode - I 应力强度因子,介绍其输入图表示、计算方法以及如何根据预测结果计算 LEFM 应力分布。
K₁₁ - GNN:与 K₁ - GNN 类似,用于预测 Mode - II 应力强度因子。
Classifier - GNN:根据预测的 Mode - I 和 Mode - II 应力强度因子,预测裂纹尖端的传播或非传播状态。
Propagator - GNN:预测所有裂纹尖端的未来位置,结合了前三个 GNN 的预测结果和初始信息。
交叉验证:对 GNN 的学习率、消息传递步骤和影响半径进行交叉验证,以优化模型性能。
预测微裂纹传播和合并:Microcrack - GNN 能够准确预测不同数量微裂纹(5 - 19 条)情况下的裂纹传播和合并,与 XFEM 模拟结果接近。
微裂纹长度增长:在预测微裂纹长度增长方面,与 XFEM 相比,Microcrack - GNN 的误差较小,但可能会预测出稍快的裂纹生长速度。
最终裂纹路径误差:Microcrack - GNN 预测的最终裂纹路径误差较低,具有较高的准确性。
有效应力强度因子误差:预测应力强度因子的误差与初始裂纹的取向和位置有关,而与裂纹数量的复杂性关系较小。
通过本天培训可以掌握
o了解计算断裂力学在预测材料裂纹行为方面的重要性,以及高保真建模技术的发展和应用。
o认识到传统高保真模拟技术在计算资源和时间方面的局限性,以及机器学习方法在解决这些问题上的潜力。
o学习图神经网络(GNN)在模拟流体、可变形材料和多晶材料等方面的应用进展。
o掌握基于扩展有限元法(XFEM)的断裂力学模型,包括其模拟多裂纹扩展和聚结的能力,以及计算应力强度因子的方法。
o理解 GNN 的基本概念,包括图的表示(顶点和边)、最近邻集的确定以及空间消息传递过程。
o学习 Microcrack - GNN 框架中各个 GNN 的实现细节, Class - GNN 预测传播和非传播微裂纹的方法,以及 CProp - GNN 预测未来裂纹尖端位置的方法。
培训背景:
异质材料在许多工程应用中越来越多地被使用,对其行为的分析通常依赖于多尺度模拟,如 FE2 方法,但这种模拟成本高昂且内存密集,尤其是在模拟损伤和断裂时。
减少阶建模技术(ROMs)可加速计算塑性和损伤力学,但运行时间仍较高,且缺乏数据可转移性。
机器学习为构建可转移且快速的材料模型提供了可行途径,RNN 被用于学习弹塑性变形的路径依赖本构律,但现有 RNN 替代品大多是黑箱或纯数据驱动模型,准确性依赖于大量训练数据集。
培训内容:
提出物理约束的数据驱动替代模型:
基于损伤力学推导了两个约束,并将其集成到 RNN 中,以减少数据依赖并提高预测精度。具体包括探索变形空间、收集响应和物理信息、构建 RNN 等三个模块。
基于均质化的多尺度建模:介绍一阶均质化计算的假设和平衡方程,以及宏观和微观尺度的应力和应变表示。
连续介质损伤建模:简述了连续介质损伤建模的基本概念和方法。
讨论本构混合积分方案:讨论了一种用于解决软化引起的数值不稳定性的混合积分方案。
构建 Vanilla 数据驱动替代模型:介绍 RNN 的工作原理,包括 FFNN 和 GRU 等结构,以及训练 RNN 的数据生成过程和损失函数。
构建物理约束的替代模型:提出基于热力学的软约束和损伤参数的硬约束,改进 RNN 的架构和损失函数,以提高模型的准确性和泛化能力。
Teacher Forcing:介绍了 Teacher Forcing 技术,即在训练时将前一步的输出或真实值反馈到当前步的输入中,但在多尺度模拟中效果不佳。
与多尺度求解器集成:阐述了将训练好的 RNN 集成到多尺度模拟中的方法,包括修改输入序列和隐式重置 RNN 的隐藏变量等。
数值实验:
替代微观尺度损伤建模:使用提出的替代模型加速金属合金的损伤分析,包括数据库生成、物理约束的影响以及 Teacher Forcing 的影响等实验。
替代多尺度损伤建模:将 RNN 作为多尺度模拟中昂贵的微观结构分析的忠实替代,比较 Von - Mises 应力分布、损伤变量分布等。
多尺度损伤替代的网格独立性研究:通过改变网格大小评估 RNN 模型在预测损伤行为时的鲁棒性,避免断裂带局限于单元素宽层。
通过本天培训可以掌握
o了解多尺度模拟在分析异质材料行为中的重要性,以及 FE2 方法在模拟分层材料时的局限性,包括计算成本高和内存需求大等问题。
o认识到断裂力学在研究材料损伤和断裂中的作用,以及离散和连续两种模拟断裂的方法。
o学习到 mechanistic reduced - order models(ROMs)在加速计算塑性和损伤力学方面的作用,以及其在减少未知变量和平衡准确性与效率方面的优势。
o了解到神经网络(NNs)在构建数据驱动的材料模型中的应用,以及循环神经网络(RNNs)在学习弹塑性变形的路径依赖本构定律方面的作用。
o理解 RNN 中两个物理约束的推导和实现,即基于热力学一致性的软约束和基于损伤参数不可逆性的硬约束,以及它们在 RNN 中的作用。
o学习教师强制(teacher forcing)技术在 RNN 训练中的作用,以及它在单尺度和多尺度模拟中的不同影响。
o了解 RNN 与多尺度求解器的集成方法,以及如何通过修改输入序列和隐式重置 RNN 的隐藏变量来实现集成。
课程特色--全面的课程技术应用、原理流程、实例联系全贯穿
学习模式--理论知识与上机操作相结合,让零基础学员快速熟练掌握
课程服务答疑--主讲老师将为您实际工作中遇到的问题提供专业解答
授课方式:
通过腾讯会议线上直播,理论+实操的授课模式,老师手把手带着操作,从零基础开始讲解,电子PPT和教程开课前一周提前发送给学员,所有培训使用软件都会发送给学员,有什么疑问采取开麦共享屏幕和微信群解疑,学员和老师交流、学员与学员交流,培训完毕后老师长期解疑,培训群不解散,往期培训学员对于培训质量和授课方式一致评价极高
腾讯会议问题实时解答及学员反馈
深度学习与有限元仿真
2024.10.26-----2024.10.27
(上午9:00-11:30 下午13:30-17:00)
2024.10.29-----2024.10.30
(晚上19:00-22:00 )
2024.11.02-----2024.11.03
(上午9:00-11:30 下午13:30-17:00)
课程报名费用:
深度学习与有限元仿真实践应用培训
每人每班¥4980元 (含报名费、培训费、资料费、提供课后全程回放资料)
优惠:提前报名缴费可享受300元优惠(仅限十五名)
课后学习完毕提供全程录像视频回放,针对与培训课程内容进行长期答疑,微信解疑群永不解散,参加本次课程的学员可免费再参加一次本单位后期组织的相同的专题培训班(任意一期都可以)