高分文章新方法-基于R语言的动态预测模型课程第三期
开课目的及前言
预测模型类文章目前总结起来发展经历了以下三个阶段:
基于传统流行病学的列线图模型(本质都是cox回归及glm回归),简单的统计学分析模型,是模型依赖的方法,临床上实际情况很难满足其前提假设,实际效果不好。
基于机器学习/深度学习的预测模型的构建(在数据上提高了维度,在算法上引入了机器学习),虽然算法上引入了机器学习模型,处理数据更加灵活,模型的假设也更少。但是在使用的数据上还是患者的一次基线数据进行预测,与临床实际不符。
基于纵向数据的动态预测模型(基于纵向多次随访数据,模型应用联合模型等动态预测模型方法),应用患者的多次随访数据对最终的生存结果进行预测,从数据和方法上都更类似于临床实际。
考虑到动态预测模型有以下特点,因此必然是后续高分文章的必备方法:
数据上必须有同一个患者的多次随访数据,相对于既往横断面一次基线数据,数据的收集难度更大,而且动态预测模型需拟合纵向的线性混合模型,因此需要的数据量较大。这就提示我们如果能收集到如上数据更加容易发高分文章。
应用方法学动态预测模型需首先掌握普通生存分析及普通预测模型的方法,并且还需要熟悉纵向数据分析的广义线性混合模型,再次基础上还需要掌握tidyverse语法基础来将自己的数据转换为满足函数要求的纵向数据,另外对于联合模型,模型的结合形式及变量选择也均需要从临床背景及统计学方法考虑。
授课老师
1 灵活胖子
双一流学校肿瘤学博士毕业,目前就职于国内五大肿瘤中心之一。科研方向为真实世界研究,生物信息学分析及人工智能研究。目前以第一或共同第一作者身份发表SCI论文10余篇,累计IF50+。目前与国内多个院校及医院有科研合作。联合翻译小组同学,在国内第一次将jmbayes2及dynamicLM全文翻译为中文并在公众号发表。
2 Rio
医学博士,临床医生。发表中英文文章 10 余篇。R 与 python 爱好者。