GF | Fazilat et al. 高硅埃达克岩的形成及其与板块断裂的关系:对生成Cu-Au-Mo斑岩系统的意义

学术   2024-11-06 13:05   陕西  

点击蓝字 关注我们

以下文章来源于Geoscience Frontiers

研究亮点

  • 埃达克岩地球化学特征,埃达克岩成因评价

  • 高硅埃达克岩的形成及其与板片断裂的关系

  • 对Cu-Au-Mo斑岩型成矿系统的影响

  • 利用GEOROC数据库中的微量元素来研究板块俯冲与板块破裂机制的对比

 

论文关键词

高硅埃达克岩

板片断离

蚀变洋壳

软流圈上涌

Cu-Au-Mo斑岩型矿床

文章摘要

 近年来,埃达克岩的特征和来源受到了广泛关注。最近,汇聚板块边缘的地球动力学环境在俯冲大洋地壳的作用下促进了岛弧的形成,逐渐演变为板块后撤,最终在碰撞后发生板块断离(即晚期至后期碰撞板块破裂(类弧岩浆作用)和逆冲)也得到了更多认可,尽管它们之间的关系尚待探讨。地球化学特征表明,埃达克岩/类埃达克岩,特别是高硅埃达克岩(HSA),可以在俯冲、岩石圈加厚和断离的末期阶段,在汇聚板块边界环境中通过俯冲热液变质洋壳的部分熔融而形成(晚期至后碰撞)。而在与俯冲相关的脱水过程中,地幔楔的熔融则生成更典型的钙碱性玄武岩-安山岩-英安岩-流纹岩系列(ADR),形成从洋内岛弧至大陆边缘弧系统。HSA以高硅(SiO2>67 wt.%)、Al2O3>15 wt.%、Sr>300 ppm、Y<20 ppm、Yb<1.8 ppm,以及Nb≤10 ppm、MgO<3 wt.%为特征,同时具有高Sr/Y(>50)和La/Yb(>10)。HSA的一些特定地球化学特征,如高Mg#(平均0.51)、Ni(平均924 ppm)和Cr(平均36 ppm),与钙碱性弧相比具有典型性,尽管两者在微量元素原始地幔标准化蛛网图中显示出类似但不那么显著的Nb、Ta和Ti的负异常。这些独特的地球化学特征可能归因于在部分熔融含水MORB洋壳的过程中,石榴石、角闪石和钛铁矿的参与,其在逆冲碰撞环境中的上升过程中仅发生少量同化和分馏结晶(AFC)。关于HSA来源的假设适用于部分埃达克岩系统,即来自年轻、炽热的大洋板块俯冲至地幔的熔融。与ADR相比,埃达克岩的地球化学特征有所不同,如相对较高的MgO、Cr、Cu和Ni,这是由于它们的板块来源,以及板块衍生的埃达克岩熔体与上覆热岩石圈地幔的相互作用;蚀变的大洋板块也相对富含亲铁元素和其他亲硫元素,以及硫酸盐和硫化物。与板块断离有关的HSA 岩浆具有特殊的地球化学性质,如Sr/Y>20、Nb/Y>0.4、Ta/Yb>0.3、La/Yb>10、Gd/Yb>2和Sm/Yb>2.5。稍高的Nb+Ta值是由于金红石的高温熔化造成的。与二氧化硅相比,Nb/Ta的变化在HSA中也很明显,这是板块破裂(后撤到断离)的结果。热液蚀变的大洋板块的高温高压部分熔融生成了HSA,其中H2O、SO2、HCl的活度相当高,并在较高fO2(fH2)下保持不相容的亲硫金属;这种情况发生在碰撞晚期至碰撞后的环境中,在这种环境中,俯冲的大洋地壳经历了板块破裂,导致上涌的岩石圈向系统增加对流热量。在这种板块破裂的情况下,走滑挤压和拉张作用对大量富含埃达克质岩浆通过俯冲改造的岩石圈和地壳迅速进入上地壳起着重要作用。当氧化板块熔体与俯冲改造岩石圈地幔相互作用时,生成的岩浆保持氧化状态,这能有利于形成斑岩型Cu-Au矿化的特殊条件。

原文信息
Formation of high-silica adakites and their relationship with slab break-off: Implications for generating fertile Cu-Au-Mo porphyry systems

Fazilat Yousefi, David R. Lentz

https://doi.org/10.1016/j.gsf.2024.101927

In recent years, the characteristics and sources of fertile adakites has received considerable attention. As well, most recently the geodynamic environment of convergent margins subducting oceanic crust aiding arc formation, evolving to slab rollback, then slab break-off after collision (i.e. late- to post-collisional slab failure (arc-like magmatism) and transpression) has gained more recognition, although their relationship to each other has yet to be explored. The geochemical characteristics imply that adakites/adakite-like, in particular high-silica adakites (HSA), can form by partial melting of subducting hydrothermally altered oceanic crust in convergent plate boundary settings during the terminal stages of subduction, lithosphere thickening, and then failure (all late to post collisional), while the melting of the mantle wedge during subduction-related dehydration creates more typical calc-alkaline basalt-andesite-dacite-rhyolite series (ADR) to form intraoceanic island arc to intracontinental margin arc systems, before the collisional stage. HSAs are characterized by high-silica (SiO2 > 67 wt.%), Al2O3 > 15 wt.%, Sr > 300 ppm, Y<20 ppm, Yb < 1.8 ppm, and Nb ≤ 10 ppm, and MgO < 3 wt.%, with high Sr/Y (>50), and La/Yb (>10). Some specific geochemical features, such as high Mg# (ave 0.51), Ni (ave 924 ppm), and Cr (ave 36 ppm), in HSAs are typical, in contrast to calc-alkaline arcs, although both groups display similar but less pronounced negative anomalies of Nb, Ta, and Ti in primitive mantle-normalized trace element spider diagram profiles. These unique geochemical features are likely ascribed to the involvement of garnet, hornblende, and titanite either during partial melting of hydrous MORB-like oceanic crust with only minor assimilation and fractional crystallization (AFC) within the mantle and crustal during ascent in a transpressional collisional environment. Hypotheses for origin of HSA derivative from melting in convergent margins from young, hot oceanic plates subducting into the mantle is applicable to only some adakitic systems. The difference in geochemical characteristics of adakites compared to ADR, such as relative higher MgO, Cr, Cu, and Ni, are due to their slab source, as well as interaction of the slab-derived adakitic melts with overlying hot lithospheric mantle; altered oceanic slabs are also relatively rich in siderophile and other chalcophile elements, as well as sulfates and sulfides. HSA magmas related to slab failure have special geochemical properties, such as Sr/Y > 20, Nb/Y > 0.4, Ta/Yb > 0.3, La/Yb > 10, Gd/Yb > 2, and Sm/Yb > 2.5. Slightly higher Nb + Ta is due to high T melting of rutile. Varieties of Nb/Ta compared to silica are also significant in HSA as a result of slab failure (roll back to break-off). High T-P partial melting of the hydrothermally altered oceanic slab produces HSA with quite high activities of H2O, SO2, HCl, with chalcophile metals that remain incompatible at higher fO2 (low fH2); these situations happen in late- to post-collisional settings where the subducting oceanic crust experienced slab failure, resulting in advective heat addition to the system from upwelling asthenosphere. In such a slab failure setting, transpression and transtension play a significant role in the rapid emplacement of a high amount of fertile adakitic magmas through the subduction-modified lithosphere and crust into the upper crust. When oxidized slab melts interact with the subduction-modified lithospheric mantle, the resulting magmas stay oxidized, potentially contributing to the special conditions conducive to formation of porphyry Cu-Au mineralization.

主办/《地学前缘(英文)》编辑部

版式编排/张培
校审/王丽丽
END

战略性关键金属科普平台
专注关键金属 报导前沿动态 普及地学知识 服务社会大众
 最新文章