选择人乳头瘤病毒 (HPV) 疫苗产品的考虑因素

文摘   2024-05-28 17:07   北京  

作者对原文件进行了部分翻译,请点击“阅读原文”或“Read more”获得英文版全文。

背景

本文件于2024年4月在世卫组织官网发布,概述了目前通过世卫组织预认证的HPV疫苗产品的技术和免疫规划相关信息,包括科学证据、疫苗定价、包装规格、冷链和储存要求等,使各国能够比较不同的HPV疫苗产品,就是否将HPV疫苗纳入国家免疫规划(或是否进行产品转换)做出明智的决策。

已获世卫组织预认证HPV疫苗的特征

自2009年以来,已有四种HPV疫苗产品通过了世卫组织预认证。其中包括两种二价产品(厦门万泰生物的Cecolin®和葛兰素史克的Cervarix)、一种四价产品(默沙东的Gardasil®)和一种九价产品(默沙东的Gardasil-9®)。以下为这些疫苗的特征。
  • 所有HPV疫苗均采用DNA重组和细胞培养技术生产,不含活性生物制品或病毒DNA,因此不具有感染性。HPV疫苗利用不同的表达系统(生产细胞),以病毒样颗粒(VLP)4的形式从HPV的L1结构蛋白制备而成。这些HPV疫苗产品含有不同的佐剂,不含防腐剂或抗生素,通过肌肉注射。
  • 在考虑四种通过预认证的HPV疫苗产品的抗原成分时,产品包含的VLP/HPV型别在数量和选择上存在重大差异。表1列出了这些HPV疫苗成分的区别。

HPV疫苗安全性

  • 作为世卫组织预认证程序的一部分,全球疫苗安全咨询委员会(GACVS)对HPV疫苗的安全性进行了审查。未发现任何安全问题7

  • 除了包括过敏性休克在内的罕见超敏反应报告外,上市后监测迄今未发现严重的安全问题。监测数据显示,目前在全球范围内使用的HPV疫苗的安全性令人放心。疫苗接种后的局部和全身反应摘要见表3。

  • 一项关于HPV疫苗安全的系统性回顾研究8发现,二价、四价和九价HPV疫苗接种者在严重不良事件或新发慢性病(包括新发自身免疫性疾病)方面几乎没有差异。

  • 一项基于人群的上市后安全性监测研究显示,接种HPV疫苗后,HPV疫苗与新发慢性病(包括自身免疫性疾病)之间没有关联。数据显示HPV疫苗不会增加格林-巴利综合征、贝尔氏麻痹(面瘫)、复杂性区域疼痛综合征(CRPS)或体位性正位性心动过速综合征(POTS)的风险9。接种HPV疫苗与不孕不育之间没有关联
禁忌证、注意事项和孕期使用
  • 禁忌证:已知对HPV疫苗的任何成分有严重过敏反应,或在接种第一剂HPV疫苗后出现严重过敏反应。

  • 预防措施:为防止晕厥和/或因昏厥受伤,接种者在接种后应坐下并观察至少15分钟。

  • 没有在孕妇中进行过良好的对照研究的情况下,不建议孕妇接种该疫苗。接种前无需进行妊娠检测。

  • 怀孕期间不慎接种疫苗不是终止妊娠的指征。
  • 如果在接种第一剂疫苗后怀孕,后续剂次(如适用)的接种应推迟到分娩后。

HPV疫苗的免疫原性和保护效力

免疫原性

  • HPV疫苗可诱导强烈的免疫应答;接种后血清阳转率接近100%。接种年龄越小,免疫应答产生的抗体滴度越高12。与自然感染相比,接种HPV疫苗后产生的抗体滴度显著更高。

  • HPV疫苗在临床试验中诱导的保护效力很高,至今还没确认最低保护性抗体滴度。

  • 文献综述和一项随机对照试验显示,接种一剂HPV疫苗的受试者血清阳转率不劣于接种两剂或两剂以上的受试者。

保护效力

  • 在HPV阴性人群中进行的以HPV感染相关的疾病——即宫颈上皮内瘤变2级或更严重(CIN2+)、原位腺癌(AIS)以及高级别外阴和阴道病变——为终点的临床研究显示,通过三剂接种程序,所有HPV疫苗对受试者都具有很高的保护效力,接近或等于100%14,15,16

  • 随后的研究评估了9-14岁青少年接种两剂与15-26岁青少年接种三剂的情况(通过对未完成三剂接种程序的受试者进行事后分析),结果表明两剂免疫程序组在血清阳转和抗体几何平均滴度方面均达到非劣效17

  • 一些研究显示,单剂HPV接种免疫程序对HPV持续感染的保护效力与多剂免疫程序相当1,18

保护期

  • 采用多剂次免疫程序,二价 Cervarix和四价Gardasil®疫苗诱导的抗体滴度至少在12年内保持高水平,2018年获批上市的Gardasil-9®疫苗诱导的抗体滴度至少在 6 年内保持高水平。采用单剂次免疫程序,抗体滴度至少在 10 年内保持稳定18

  • 在一项比较一剂、两剂和三剂免疫程序的事后分析中,所有免疫程序后诱导的对HPV 16/18的保护效力至少 10 年内都很高(>90%)。

  • 没有证据表明HPV疫苗在完成初免后需要加强剂次。

免疫规划考虑因素

  • 一些免疫规划需要考虑的HPV疫苗产品的特征是相似或相同的(如接种途径、配方、储存温度、疫苗瓶监控器、损耗率)。

  • 其他重要因素——如包装规格、受控温度链(controlled temperature chain, CTC)适应证、冷链和储存要求、装量以及价格——则因产品而异,选择转换或纳入多种产品的国家可能需要进行额外规划(表5)。

  • HPV疫苗的主要目标人群是9-14岁的女孩。次要目标人群,如年龄≥15岁的女性、男孩、年长男性或男男性行为者,只有在可行且负担得起的情况下建议接种。并非所有现有产品都获得了男性使用的许可。

  • 在将HPV疫苗纳入免疫规划并计划对18岁以下的多年龄组进行补种时,应考虑供应可得性和冷链影响。

  • 在将HPV疫苗纳入免疫规划前,需要对免疫接种工作人员进行疫苗使用方面的培训,包括在改用2剂西林瓶包装的产品之前,应正确执行多剂量西林瓶政策的情况。

HPV疫苗免疫程序推荐1,35

两剂次免疫程序
  • 最低接种年龄可为9岁,到产品许可的最大年龄,出于免疫规划和保护效力方面的考虑,建议间隔12个月。

  • 两剂最小间隔时间:6个月。

  • 剂次之间没有最长间隔限制;如果符合免疫规划,可考虑延长间隔至3年或5年。
单剂次免疫程序
  • 可用于9-20岁的女性和男性。

  • 鉴于目前有证据表明其保护效力和保护期与两剂次程序相当,单剂次程序可能具有免疫规划优势,更有效率,更可负担,且有助于提高覆盖率。

  • 从公共卫生角度,单剂次程序可提供巨大的获益,其获益超过了随着时间推移保护效力减弱36而降低保护水平的潜在风险。
免疫力受损者的免疫程序
  • 建议免疫力受损者或艾滋病毒感染者(不考虑年龄或抗逆转录病毒治疗情况)采用多剂接种方案:
  • 至少两剂,第一剂和第二剂之间至少间隔6个月(0,6);

  • 在可能的情况下,按0、1-2、6月进行三剂免疫程序。

互换性

  • 在多剂免疫程序中应使用相同的HPV疫苗产品。

  • 如果前一剂使用的产品未知或无法获得,可接种任何HPV疫苗来完成推荐的完整免疫程序。

  • Gardasil-9®和Cervarix混合免疫程序的安全性和免疫原性的数据已公布1
与其他疫苗联合接种
  • HPV疫苗与其他疫苗(包括活疫苗)可同时接种,使用单独注射器在不同的部位接种1

筹资考虑

  • 世卫组织开发了宫颈癌预防和控制HPV疫苗成本计算工具(C4P),以支持各国计划将HPV疫苗纳入现有的免疫规划40。有一个专门的成本计算工具,用于计算转换产品的成本41

  • 一些研究表明,按照目前的疫苗价格和建议的免疫程序,即使假设没有交叉保护或群体保护,仅为女孩接种疫苗与不接种疫苗相比具有成本效果42。评估国家层面的成本效果,可以使用PRIME工具43

新疫苗纳入免疫规划决策的优先级

世卫组织的CAPACITI工具45可用于支持标准化的国家决策,对新疫苗纳入免疫规划、产品转换或免疫程序改变的多种产品选择方案进行比较。该工具可将证据和利益相关者的不同观点结合起来,以提出建议并记录过程和结果。

翻译:韩青

审阅:袁瑗
参考文献:

1Human papillomavirus vaccines: WHO position paper (2022 update). Weekly Epidemiological Record. 2022; 97:645–672 (https://www.who.int/teams/immunization-vaccines-and-biologicals/policies/position-papers/human-papillomavirus-(hpv), accessed 18 February 2023).

2 de Martel C, Georges D, Bray F, Ferlay J, Clifford GM. Global burden of cancer attributable to infections in 2018: a worldwide incidence analysis. Lancet Glob Health. 2020;8(2):e180-e190. doi: 10.1016/S2214-109X(19)30488-7.  

3 World Health Assembly adopts global strategy to accelerate cervical cancer elimination. WHO News, 19 August 2020 (https://www.who.int/news/item/19-08-2020-world-health-assembly-adopts-global-strategy-to-accelerate-cervical-cancer-elimination, accessed 27 October 2023).

4 HPV type-specific empty shells named virus-like particles (VLPs) self-assemble spontaneously from pentamers of the L1 major capsid protein.  

5 WHO Prequalification (website) (https://extranet.who.int/pqweb/, accessed 27 October 2023).

6 Patel H, Wagner M, Singhal P, Kothari S. Systematic review of the incidence and prevalence of genital warts. BMC Infect Dis. 2013 Jan 25;13:39. doi: 10.1186/1471-2334-13-39.  

7 Meeting of the Global Advisory Committee on Vaccine Safety, 7–8 June 2017. Weekly Epidemiological Record. 2017; 92:398–401 ( https://www.who.int/publications/i/item/WER9228, accessed 18 February 2023).

8 Placeholder for: Henschke N, Bergman H, Villanueva G, Loke YK, Golder SP, Crosbie EJ et al. Effects of human papillomavirus (HPV) vaccination programmes on community rates of HPV-related disease and harms from vaccination. Cochrane Database of Systematic Reviews. 2022 – currently only the protocol available.

9 Safety of HPV vaccines. WHO Global Advisory Committee on Vaccine Safety (GACVS), 7–8 June 2017 (online) (report on HPV vaccine https://www.who.int/groups/global-advisory-committee-on-vaccine-safety/topics/human-papillomavirus-vaccines/safety, accessed 27 October 2023).  

10 Henschke N, Bergman H, Villanueva G, Loke YK, Golder SP, Crosbie EJ, Kyrgiou M, Dwan K, Morrison J. Effects of human papillomavirus (HPV) vaccination programmes on community rates of HPV‐related disease and harms from vaccination. Cochrane Database Syst Rev. 2022 May 31;2022(5):CD015363. doi: 10.1002/14651858.

11 Immunization stress-related response: a manual for program managers and health professionals to prevent, identify and respond to stress-related responses following immunization. Geneva: World Health Organization; 2019 (https://www.who.int/publications/i/item/9789241515948, accessed 18 February 2023).

12The age extension of original licensure of HPV vaccines to pre-adolescent and adolescent girls and boys – in whom efficacy trials were not deemed feasible because of ethical considerations – was granted on the basis of immunobridging studies demonstrating non-inferiority.  

13 Watson-Jones D, Changalucha J, Whitworth H, Pinto L, Mutani P, Indangasi J et al. Immunogenicity and safety of one-dose human papillomavirus vaccine compared with two or three doses in Tanzanian girls (DoRIS): an open-label, randomised, non-inferiority trial. Lancet Glob Health. 2022;10(10):e1473–84. doi: 10.1016/S2214-109X(22)00309-6.

14 The FUTURE II Study Group. Quadrivalent vaccine against human papillomavirus to prevent high-grade cervical lesions. N Engl J Med. 2007;356:1915–27. doi: 10.1056/nejmoa061741.

15 Garland SM, Hernandez-Avila M, Wheeler CM, Perez G, Harper DM, Leodolter S et al. Quadrivalent vaccine against human papillomavirus to prevent anogenital diseases. N Engl J Med. 2007;356:1928–43. doi: 10.1056/NEJMoa061760.

16 Paavonen J, Jenkins D, Bosch FX, Naud P, Salmeron J, Wheeler CM et al.Efficacy of a prophylactic adjuvanted bivalent L1 virus-like-particle vaccine against infection with human papillomavirus types 16 and 18 in young women: an interim analysis of a phase III double-blind, randomised controlled trial. Lancet. 2007;369(9580):2161–70. doi: 10.1016/S0140-6736(07)60946-5.

17 Kreimer AR, Rodriguez AC, Hildesheim A, Herrero R, Porras C, Schiffman M et al. Proof-of-principle evaluation of the efficacy of fewer than three doses of a bivalent HPV16/18 vaccine. J Natl Cancer Inst. 2011;103(9):1444–51. doi: 10.1093/jnci/djr319.

18Efficacy, effectiveness and immunogenicity of one dose of HPV vaccine compared with no vaccination, two doses, or three doses. Cochrane Response, March 2022 (https://cdn.who.int/media/docs/default-source/immunization/position_paper_documents/human-papillomavirus-(hpv)/systematic-review-of-1-dose-of-hpv-vaccinec14d7ee3-e409-4a1a-afd9-c3e7e0dd2bd9.pdf?sfvrsn=174858f6_1, accessed 28 October 2023).  

19 Drolet M, Bénard É, Pérez N, Brisson M; HPV Vaccination Impact Study Group. Population-level impact and herd effects following the introduction of human papillomavirus vaccination programmes: updated systematic review and meta-analysis. Lancet. 2019 Aug 10;394(10197):497-509. doi: 10.1016/S0140-6736(19)30298-3.

20 Rosenblum HG, Lewis RM, Gargano JW, Querec TD, Unger ER, Markowitz LE. Declines in prevalence of human papillomavirus vaccine-type infection among females after introduction of vaccine – United States, 2003–2018. MMWR Morb Mortal Wkly Rep. 2021;70(12):415–20. doi: 10.15585/mmwr.mm7012a2.

21 Palmer T, Wallace L, Pollock KG, Cuschieri K, Robertson C, Kavanagh K et al. Prevalence of cervical disease at age 20 after immunisation with bivalent HPV vaccine at age 12–13 in Scotland: retrospective population study. BMJ. 2019;365:I1161 (https://pubmed.ncbi.nlm.nih.gov/30944092/, accessed 28 October 2023).

22 Lei J, Ploner A, Elfström KM, Wang J, Roth A, Fang F et al. HPV vaccination and the risk of invasive cervical cancer. N Engl J Med. 2020;383(14):1340–8. doi: 10.1056/NEJMoa1917338.

23Falcaro M, Castaño A, Ndela B, Checchi M, Soldan K, Lopez-Bernal J et al. The effects of the national HPV vaccination programme in England, UK, on cervical cancer and grade 3 cervical intraepithelial neoplasia incidence: a register-based observational study. Lancet. 2021;398(10316):2084–92. doi: 10.1016/S0140-6736(21)02178-4.  

24 WHO Prequalification (website) (https://extranet.who.int/prequal/vaccines/p/cecolinr, accessed 17 November 2023).

25 Lang Kuhs KA, Porras C, Schiller JT, Rodriguez AC, Schiffman M, Gonzalez P et al. Costa Rica Vaccine Trial Group. Effect of different human papillomavirus serological and DNA criteria on vaccine efficacy estimates. Am J Epidemiol. 2014 Sep 15;180(6):599-607. doi: 10.1093/aje/kwu168.

26 Lehtinen M, Paavonen J, Wheeler CM, Jaisamrarn U, Garland SM, Castellsagué et al. HPV PATRICIA Study Group. Overall efficacy of HPV-16/18 AS04-adjuvanted vaccine against grade 3 or greater cervical intraepithelial neoplasia: 4-year end-of-study analysis of the randomised, double-blind PATRICIA trial. Lancet Oncol. 2012 Jan;13(1):89-99. doi: 10.1016/S1470-2045(11)70286-8.

27 Kjaer SK, Sigurdsson K, Iversen OE, Hernandez-Avila M, Wheeler CM, Perez G et al. A pooled analysis of continued prophylactic efficacy of quadrivalent human papillomavirus (Types 6/11/16/18) vaccine against high-grade cervical and external genital lesions. Cancer Prev Res (Phila). 2009 Oct;2(10):868-78. doi: 10.1158/1940-6207.CAPR-09-0031.

28 WHO Prequalification (website) (https://extranet.who.int/prequal/vaccines/p/gardasil-9, accessed 17 November 2023).

29 Phase 3 trial of a bivalent HPV vaccine (Cecolin®) in young girls. CinicalTrials.gov. (https://clinicaltrials.gov/ct2/show/NCT04508309, accessed 28 October 2023).

30 Barnabas RV, Brown ER, Onono M, Bukusi EA, Njoroge B, Winer RL et al. KEN SHE Study Team. Single-dose HPV vaccination efficacy among adolescent girls and young women in Kenya (the KEN SHE Study): study protocol for a randomized controlled trial. Trials. 2021 Sep 27;22(1):661. doi: 10.1186/s13063-021-05608-8.

31Baisley K, Kemp TJ, Kreimer AR, Basu P, Changalucha J, Hildesheim A et al. Comparing one dose of HPV vaccine in girls aged 9-14 years in Tanzania (DoRIS) with one dose of HPV vaccine in historical cohorts: an immunobridging analysis of a randomised controlled trial. Lancet Glob Health. 2022 Oct;10(10):e1485-e1493. doi: 10.1016/S2214-109X(22)00306-0.  

32Mariz FC, Gray P, Bender M, Eriksson T, Kann H, Apter D et al. Sustainability of neutralising antibodies induced by bivalent or quadrivalent HPV vaccines and correlation with efficacy: a combined follow-up analysis of data from two randomised, double-blind, multicentre, phase 3 trials. Lancet Infect Dis. 2021;21(10):1458–68. doi: 10.1016/S1473-3099(20)30873-2.  

33 WHO Policy Statement: Multi-dose Vial Policy (MDVP). Geneva: World Health Organization; 2014 (https://apps.who.int/iris/bitstream/handle/10665/135972/WHO_IVB_14.07_eng.pdf, accessed 18 February 2023).

34 WHO Health products policy and standards (CTC) (https://www.who.int/teams/immunization-vaccines-and-biologicals/essential-programme-on-immunization/supply-chain/controlled-temperature-chain-(ctc), accessed by 30 October)

35The recommendations contained in this paper are based on the advice of independent experts, who have considered the best available evidence, a risk–benefit analysis and other factors, as appropriate. This paper includes recommendations on the use of medicinal products for an indication, in a dosage form, dose regimen, population or other use parameters that are not included in the approved labelling. Relevant stakeholders should familiarize themselves with applicable national legal and ethical requirements. WHO does not accept any liability for the procurement, distribution and/or administration of any product for any use. 

36There is no current evidence of waning efficacy over time.  

37 HPV vaccine: session introduction and key questions (PowerPoint presentation to the WHO Strategic Advisory Group of Experts on Immunization, 6 April 2022). Geneva: World Health Organization; 2022 (https://cdn.who.int/media/docs/default-source/immunization/position_paper_documents/human-papillomavirus-(hpv)/hpv-vaccine-session-introduction-key-questions-april-2022.pdf, accessed 18 February 2023).

38 Market Information for Access to Vaccines (MI4A) vaccine purchase database. Geneva: World Health Organization (Immunization, Vaccines and Biologicals (who.int), accessed 28 October 2023).

39 Gavi product menu. Copenhagen: UNICEF Supply Division (https://www.unicef.org/supply/documents/gavi-product-menu, accessed 2 March 2023) .

40 WHO Cervical Cancer Prevention and Control Costing tool (C4P): human papillomavirus vaccination module. Geneva: World Health Organization (https://www.who.int/publications/m/item/WHO-Cervical-Cancer-Prevention-and-Control-Costing-tool-human-papillomavirus-vaccination-module, accessed 28 October 2023).

41 HPV Vaccine Cost Calculator. Seattle (WA): PATH (https://www.path.org/resources/hpv-vaccine-cost-calculator/, accessed 28 October 2023).

42 Burger EA, Portnoy A, Campos NG, Sy S, Regan C, Kim JJ. Choosing the optimal HPV vaccine: the health impact and economic value of the nonavalent and bivalent HPV vaccines in 48 Gavi-eligible countries. Int J Cancer. 2021;148(4):932–40. doi: 10.1002/ijc.33233.

43Abbas KM, van Zandvoort K, Brisson M, Jit M. Effects of updated demography, disability weights, and cervical cancer burden on estimates of human papillomavirus vaccination impact at the global, regional, and national levels: a PRIME modelling study. Lancet Glob Health. 2020;8(4):e536–44. doi: 10.1016/S2214-109X(20)30022-X.  

44Global market study: HPV. Geneva: World Health Organization; 2022 (https://cdn.who.int/media/docs/default-source/immunization/mi4a/who-mi4a-global-market-study-hpv.pdf?sfvrsn=649561b3_1&download=true, accessed 18 February 2023).  

45 The CAPACITI decision-support tool. Geneva: World Health Organization (https://www.who.int/teams/immunization-vaccines-and-biologicals/immunization-analysis-and-insights/vaccine-impact-value/economic-assessments/vaccine-prioritization#:~:text=The%20decision%2Dsupport%20tool%20has,a%20legitimate%20and%20credible%20recommendation, accessed 28 October 2023).

46 WHO National Immunization Strategy (website). Geneva: World Health Organization (https://www.who.int/teams/immunization-vaccines-and-biologicals/vaccine-access/planning-and-financing/nis, accessed 28 October 2023).



CNVAC
中国疫苗学培训 Chinese Vaccinology Course (CNVAC)的官方公众号,CNVAC为国内第一个全面系统的疫苗学培训。本号旨在分享国内外疫苗学相关学术进展,会议信息和培训招生启示等。
 最新文章