第一作者:杨佩杰
通讯作者:刘艳伟 助理研究员、阴永光 研究员
通讯单位:国科大杭州高等研究院、中国科学院生态环境研究中心
论文DOI: 10.1021/acs.est.4c06586
PSOM燃烧导致其EEC降低,EC增强
Figure 1. (A, B) Change in electron-donating capacity (EDC), electron-accepting capacity (EAC), and electron exchange capacity (EEC) with burning temperature. (C) Change in electrical conductivity with burning temperature. A-pyPSOM and N-pyPSOM represent oxic and anoxic burnt samples, respectively. PPS represents unburnt PSOM and N150-N450 represents anoxic burnt samples at 150‒450℃. TT1 and TT2 represent the temperatures at which EEC begins to lose and stabilize again, respectively.
通过模拟泥炭土壤燃烧,发现燃烧显著改变了PSOM的电子传递特性。250℃内燃烧,PSOM的电子传递特性主要由EEC贡献,但随着温度升高,EEC降低,EC增强,电子传递特性由EEC和EC共同驱动。EEC具一定的有热抗性,使其在200℃(TT1)可保持稳定。但随温度的进一步升高,EEC迅速降低,在350℃(TT2)后,再次保持稳定。值得注意的是,氧气可显著影响燃烧过程中EEC的演变。TT2后,有氧燃烧的PSOM(A-pyPSOM)EEC是缺氧燃烧(N-pyPSOM)EEC的1.5倍。这一差异由有氧燃烧过程中氧气向PSOM中并入形成更多醌导致。
火后PSOM的电子传递活性由官能团及石墨碳共同驱动
Figure 2. (A) Correlation between electron-accepting capacity (EACMER) and electron-accepting moieties (assigned as EACNa2S2O4). (B) Correlation between electron-donating capacities (EDC) and electron-donating moieties (i.e., total phenols). (C) Correlation between aromaticity index (AI) and electrical conductivity. (D) Change in EAC with ID/G (the intensity ratio of D bond and G bond in Raman spectrum). A-pyPSOM and N-pyPSOM represent oxic and anoxic burnt samples, respectively.
Fe(II)可贡献大量的EDC,但燃烧过程中形成的杂环氮可抑制其活性
Figure 3. (A) Changes in electron-donating capacity (EDC) with EH and pH conditions. (B) Effect of the ligand on the EDC of Fe3O4nanoparticles at EH = +0.61 V and +0.73 V, respectively. (C, D) Correlation of difference value between EDCEH =+0.73 V, pH 7.0 and EDCEH =+0.73 V, pH 9.0 (ΔEDC) and Fe(II) content. Gray numbers represent the contribution of Fe(II) to EDC at +0.61 V, which was obtained by calculating the ratio of [ΔEDC −Fe(II)] to EDCEH = 0.61 V, pH 7. When phenols are the main eletron-donating capacity, EDCEH = +0.73 V, pH 7.0 ≈ EDCEH = +0.61 V, pH 9.0. A-yPSOM and N-pyPSOM represent oxic and anoxic burning samples.
Fe(II)是PSOM中主要的铁物种,可贡献大量的EDC。高电位下(EH= +0.73 V),EDC与总酚含量相关性较差,推测高电位下,EDC主要由酚和Fe(II)共同驱动。基于EDC与pH-EH相关分析及小分子模型进一步评估,发现200℃内,Fe(II)可在低电位下(EH= +0.61 V)贡献EDC,温度进一步升高,由于杂环N与Fe(II)结合,其EDC受到抑制,仅能在高电位下贡献EDC。
PSOM燃烧减缓了微生物铁还原及甲烷生成,但增强的EC可能在火后的生物地球化学过程中发挥重要作用
Figure 4. Effect of peat burning on PSOM-mediated microbial FeNPs reduction and methanogenesis. (A) Change in reduction extent of Fe(III) in the presence of oxic burnt samples (0.1 mg mL-1). (B) Correlation between electron-accepting capacity (EAC) and reduction rate (0-3 h) of Fe(III). (C) Change in CH4 production in the presence of PPS (unburnt PSOM, 1 g L-1), N500 (anoxic burnt PSOM at 500℃, 1 g L-1), and quinone model (AQDS, 1 mM) in the pure-cultural and co-cultural systems. The α-Fe2O3 and acetate concentrations were 1 and 30 mM, respectively. G. sulfurreducens PCA: GS; Methanosarcina barkeri: MB. The inoculum concentration is 5% both of GS and MB. The v, v1, and v2 are CH4production rates.
PSOM可通过电子穿梭作用增强微生物铁还原速率,燃烧显著削弱了PSOM在微生物铁还原中的电子穿梭作用(还原速率降低)。通过相关性分析发现,这一电子穿梭作用主要由EAC驱动。值得注意的是,低温PSOM添加组(A250)中铁还原达到平衡后,高温PSOM添加组(A500)中铁还原仍继续进行,提示了高温燃烧后随着官能团的消耗,增强的EC可继续提供电子穿梭作用,增强铁还原,进一步证实了火灾后PSOM的电子传递特性由EEC和EC共同驱动。此外,火诱导的PSOM电子传递能力的变化也削弱了CH4生成速率。燃烧后,由于EAC的降低,CH4生成速率由94.99 ± 1.71 µmol d-1降低至12.75 ± 1.22 µmol d-1 ,但在受电子基团消耗完后,由于EC增强,CH4生成速率再次增加至74.91 ± 3.01 µmol d-1。
这项工作揭示了PSOM的电子传递特性随火灾温度的动态变化,强调了官能团及石墨碳在火灾后电子传递中的重要作用,进一步增强了对火灾后泥炭生物地球化学过程的理解。燃烧通过消耗醌酚基团导致EEC损失,但通过形成石墨碳结构增强其EC。燃烧重塑了贡献EEC的活性官能团组分。燃烧后EAC主要由醌和杂环氮驱动,EDC则由酚类基团和结合的Fe(II)贡献,但由与Fe(II)与杂环氮的高亲和力,其活性在火后受到抑制。重要的是,火灾诱导的EAC降低削弱了PSOM的电子穿梭效应,EC的增强可能在火后泥炭地CH4生成中发挥重要作用。该工作为探究火后泥炭地CH4排放机制提供了新思路。
Peijie Yang, Shuai Wang, Tianran Sun, Tao Jiang, Yifan Cui, Guangliang Liu, Yingying Guo, Yanwei Liu, Ligang Hu, Jianbo Shi, Qinghua Zhang, Yongguang Yin, Yong Cai, Guibin Jiang, Fire-Induced Multiple Changes in Electron Transfer Properties of Peat Soil Organic Matter: The Role of Functional Groups, Graphitic Carbon, and Iron, Environ. Sci. Technol. 2024, DOI: 10.1021/acs.est.4c06586
https://pubs.acs.org/doi/10.1021/acs.est.4c06586