数形结合思想
数形结合思想指将数量与图形结合起来,对题目中给定的题设和结论既进行代数方面的分析,又从几何含义方面进行分析,将抽象的数学语言与直观的图形结合起来,使抽象思维与形象思维相结合,也可以使图形的性质通过数量之间的计算与分析,更加完整、严密和准确。
在解决数学问题的过程时要善于由形思数、由数思形、数形结合,通过数量与图形的转化,把数的问题利用图形直观地表示出来,力图找到解题思路。
分类讨论思想
当面临的问题不宜用一种方法处理或同一种形式叙述时,就把问题按照一定的原则或标准分为若干类,然后逐类进行讨论,再把这几类的结论汇总,得出问题的答案,这种解决问题的思想方法就是分类讨论的思想方法。
分类讨论的思想方法的实质是把问题“分而治之,各个击破”。其一般规则及步骤是:
转化与化归思想
“化归”就是转化和归结的简称。所谓化归就是将所要解决的问题转化归结为另一个比较容易解决的问题或已经解决的问题。具体说就是把“新知识”转化为“旧知识”,把“未知”转化为“已知”,把“复杂问题”转化为“简单问题”。如将分式方程转化为整式方程,将高次方程转化为低次方程,将二元转化为一元,将四边形转化为三角形,将非对称图形转化为对称图形……
方程思想
所谓方程思想就是先分析问题中的未知元素(未知量)的个数,再寻找关于这些未知量的相应个数的方程,从而用解方程(组)的方法探求解题途径的思想。
函数思想
函数所揭示的是两个变量之间的对应关系,通俗讲就是一个量的变化引起了另一个量的变化。在数学中总是设法将这种对应关系用解析式表示出来,这样就能充分运用函数的知识、方法来解决有关的问题。
整体思想
整体思想就是考虑数学问题的时候不仅仅局限于它的局部特征,而且着眼于问题的整体结构上,通过对其全面深刻的观察,从宏观上认识问题的实质,把一些彼此独立,但实质又相互紧密联系的量作为整体进行处理的思想方法。整体思想在处理数学问题时有着广泛的运用。
归纳、类比思想