[1] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks. In: Proceedings of the 25th International Conference on Neural Information Processing Systems (NIPS), Lake Tahoe, Nevada, USA: IEEE, 2012. 1097−1105.
[2] Bottou L, Bousquet O. The tradeoffs of large scale learning[J]. Advances in neural information processing systems, 2007, 20.
[3] Shen J, Qu Y, Zhang W, et al. Wasserstein distance guided representation learning for domain adaptation[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2018, 32.
[4] 皋军, 黄丽莉, 孙长银. 一种基于局部加权均值的领域适应学习框架. 自动化学报, 2013, 39(7): 1037-1052. doi: 10.3724/SP.J.1004.2013.01037.
GAO Jun, HUANG Li-Li, SUN Chang-Yin. A Local Weighted Mean Based Domain Adaptation Learning Framework. ACTA AUTOMATICA SINICA, 2013, 39(7): 1037-1052. doi: 10.3724/SP.J.1004.2013.01037
[5] Ganin Y, Ustinova E, Ajakan H, et al. Domain-adversarial training of neural networks[J]. The journal of machine learning research, 2016, 17(1): 2096-2030.
[6] Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11): 139-144. doi: 10.1145/3422622
[7] 郭迎春, 冯放, 阎刚, 郝小可. 基于自适应融合网络的跨域行人重识别方法. 自动化学报, 2022, 48(11): 2744-2756 doi: 10.16383/j.aas.c220083.
Guo Ying-Chun, Feng Fang, Yan Gang, Hao Xiao-Ke. Cross-domain person re-identification on adaptive fusion network. Acta Automatica Sinica, 2022, 48(11): 2744?2756 doi: 10.16383/j.aas.c220083
[8] 梁文琦, 王广聪, 赖剑煌. 基于多对多生成对抗网络的非对称跨域迁移行人再识别. 自动化学报, 2022, 48(1): 103-120 doi: 10.16383/j.aas.c190303.
Liang Wen-Qi, Wang Guang-Cong, Lai Jian-Huang. Asymmetric cross-domain transfer learning of person re-identification based on the many-to-many generative adversarial network. Acta Automatica Sinica, 2022, 48(1): 103?120 doi: 10.16383/j.aas.c190303.
[9] Ren S, He K, Girshick R, et al. Faster r-cnn: Towards real-time object detection with region proposal networks[J]. Advances in neural information processing systems, 2015, 28.
[10] Chen Y, Li W, Sakaridis C, et al. Domain adaptive faster r-cnn for object detection in the wild[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 3339−3348.
[11] Saito K, Ushiku Y, Harada T, et al. Strong-Weak distribution alignment for adaptive object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019: 6956−6965.
[12] Lin T Y, Goyal P, Girshick R, et al. Focal Loss for Dense Object Detection[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, PP(99): 2999-3007.
[13] Shen Z, Maheshwari H, Yao W, et al. Scl: Towards accurate domain adaptive object detection via gradient detach based stacked complementary losses[J]. arXiv preprint arXiv: 1911.02559, 2019.
[14] Zheng Y, Huang D, Liu S, et al. Cross-domain Object Detection through Coarse-to-Fine Feature Adaptation: IEEE, 10.1109/CVPR42600.2020.01378[P]. 2020.
[15] Xu C D, Zhao X R, Jin X, et al. Exploring categorical regularization for domain adaptive object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 11724−11733.
[16] HSU C C, TSAI Y H, LIN Y Y, et al. Every Pixel Matters: Center-Aware Feature Alignment for Domain Adaptive Object Detector[C]//VEDALDI A, BISCHOF H, BROX T, et al. Computer Vision – ECCV 2020. Cham: Springer International Publishing, 2020: 733−748.
[17] Chen C, Zheng Z, Ding X, et al. Harmonizing transferability and discriminability for adapting object detectors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 8869−8878.
[18] Zhu J Y, Park T, Isola P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//Proceedings of the IEEE international conference on computer vision. 2017: 2223−2232.
[19] Deng J, Li W, Chen Y, et al. Unbiased mean teacher for cross-domain object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021: 4091−4101.
[20] Xu M, Wang H, Ni B, et al. Cross-domain detection via graph-induced prototype alignment[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 12355−12364.
[21] Wu A, Liu R, Han Y, et al. Vector-decomposed disentanglement for domain-invariant object detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021: 9342−9351.
[22] Chen C, Zheng Z, Huang Y, et al. I3net: Implicit instance-invariant network for adapting one-stage object detectors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021: 12576−12585.
[23] 李威, 王蒙. 基于渐进多源域迁移的无监督跨域目标检测[J]. 自动化学报, 2022, 48(8): 1-15. doi: 10.16383/j.aas.c190532
Li Wei, Wang Meng. Unsupervised cross-domain object detection based on progressive multi-source transfer. Acta Automatica Sinica, 2022, 48(9): 2337?2351 doi: 10.16383/j.aas.c190532.
[24] A. L. Rodriguez and K. Mikolajczyk, "Domain adaptation for object detection via style consistency," British Machine Vision Conference, 2019.
[25] Liu W, Anguelov D, Erhan D, et al. Ssd: Single shot multibox detector[C]//European conference on computer vision. Springer, Cham, 2016: 21−37.
[26] Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object detection[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 779−788.
[27] Yolov8 [Online], available: https://github.com/ultralytics/yolov8, Feb 15, 2023
[28] Zhang S, Tuo H, Hu J, et al. Domain Adaptive YOLO for One-Stage Cross-Domain Detection[C]//Asian Conference on Machine Learning. PMLR, 2021: 785−797.
[29] Redmon J, Farhadi A. Yolov3: An incremental improvement[J]. arXiv preprint arXiv: 1804.02767, 2018.
[30] HNEWA M, RADHA H. Integrated Multiscale Domain Adaptive YOLO[J]. arXiv: 2202.03527, 2022
[31] Bochkovskiy A, Wang C Y, Liao H Y M. Yolov4: Optimal speed and accuracy of object detection[J]. arXiv preprint arXiv: 2004.10934, 2020.
[32] Vidit V, Salzmann M. Attention-based domain adaptation for single-stage detectors[J]. Machine Vision and Applications, 2022, 33(5): 65. doi: 10.1007/s00138-022-01320-y
[33] Yolov5[Online], available: https://github.com/ultralytics/yolov5, Nov 28, 2022
[34] LI G, JI Z, QU X, et al. Cross-Domain Object Detection for Autonomous Driving: A Stepwise Domain Adaptative YOLO Approach[J]. IEEE Transactions on Intelligent Vehicles, 2022: 1-1.