[1] Andrew M L, Peter H H. Medical conditions and high-altitude travel. New England Journal of Medicine, 2022, 386(4): 364-373 doi: 10.1056/NEJMra2104829
[2] Joshua C T, Philip N A. Global and country-level estimates of human population at high altitude. Proceedings of the National Sciences, 2021, 118(18): e2102463118 doi: 10.1073/pnas.2102463118
[3] Cobb A B, Levett D Z H, Mitchell K, Aveling W, Hurlbut D, Gilbert-Kawai E, et.al. Physiological responses during ascent to high altitude and the incidence of acute mountain sickness. Physiological reports, 2021, 9(7): e14809
[4] Gudbjartsson T, Sigurdsson E, Gottfredsson M, Bjornsson O M, Gudmundsson G. High altitude illness and related diseases - A review. Laeknabladid, 2019, 105(11): 499-507
[5] Victor S, Jan C P, and Katarína K. Manifestation of intracranial lesions at high altitude: Case report and review of the literature. High Altitude Medicine & Biology, 2021, 22(1): 87-89
[6] Fulco C S, Beidleman B A, Muza S R. Effectiveness of preacclimatization strategies for highaltitude exposure. Exercise and Sport Sciences Reviews, 2013, 41(1): 55-63 doi: 10.1097/JES.0b013e31825eaa33
[7] Ambroży T, Maciejczyk M, Klimek A T, Wiecha S, Stanula A, Snopkowski P, et.al. The effects of intermittent hypoxic training on anaerobic and aerobic power in boxers. International Journal of Environmental Research and Public Health, 2020, 17(24): 9361 doi: 10.3390/ijerph17249361
[8] Wille M, Gatterer H, Mairer K, Philippe M, Schwarzenbacher H, Faulhaber M, et.al. Short-term intermittent hypoxia reduces the severity of acute mountain sickness. Medicine & Science in Sports, 2012, 22(5): e79-e85
[9] 刘园园. 高原健康理论框架下的渐进型间歇性低氧预习服训练研究 [博士学位论文], 山东大学, 中国, 2014
Liu Yuan-Yuan. Short-Term Intermittent Hypoxia Reduces the Severity of Acute Mountain Sickness [Ph.D. dissertation], Shandong University, China, 2014
[10] Treml B, Kleinsasser A, Hell T, Knotzer H, Wille M, Burtscher M. Carry-over quality of pre-acclimatization to altitude elicited by intermittent hypoxia: A participant-blinded, randomized controlled trial on antedated acclimatization to altitude. Frontiers in Physiology, DOI: 10.3389/fphys.2020.00531
[11] Gangwar A, Pooja, Sharma M, Singh K, Patyal A, Bhaumik G, et.al. Intermittent normobaric hypoxia facilitates high altitude acclimatization by curtailing hypoxia-induced infammation and dyslipidemia. Pflugers Archiv, 2019, 471(7):949-959 doi: 10.1007/s00424-019-02273-4
[12] 杨军, 俞梦孙, 曹征涛, 吴峰, 张宏金, 王海涛, 等.间歇性递增式常压低氧暴露训练对高原习服效果的研究. 中华航空航天医学杂志, 2012, 3: 161-164
Yang Jun, Yu Meng-Sun, Cao Zheng-Tao, Wu Feng, Zhang Hong-Jin, Wang Hai-Tao, et.al. Study on the effect of increasing intermittent hypoxia exposure on altitude acclimatization. Chinese Journal of Aerospace Medicine, 2012, 3: 161-164
[13] Kwiatkowska M, Atkins M S, Ayas N T, Ryan C F. Knowledge-based data analysis: First step toward the creation of clinical prediction rules using a new typicality measure. IEEE Transactions on Information Technology in Biomedicine, 2007, 11(6):651-660 doi: 10.1109/TITB.2006.889693
[14] Sakellarios A I, Räber L, Bourantas C V, Exarchos T P, Athanasiou L S, Pelosi G, et.al. Prediction of atherosclerotic plaque development in an In Vivo coronary arterial segment based on a multilevel modeling approach. IEEE Transactions on Biomedical Engineering, 2017, 64(8):1721-1730 doi: 10.1109/TBME.2016.2619489
[15] 喻勇, 司小胜, 胡昌华, 崔忠马, 李洪鹏. 数据驱动的可靠性评估与寿命预测研究进展:基于协变量的方法. 自动化学报, 2018, 44(2): 216-227
Yu Yong, Si Xiao-Sheng, Hu Chang-Hua, Cui Zhong-Ma, Li Hong-Peng. Data driven reliability assessment and life-time prognostics: A review on covariate models. Acta Automatica Sinica, 2018, 44(2): 216-227
[16] 李天梅, 司小胜, 刘翔, 裴洪. 大数据下数模联动的随机退化设备剩余寿命预测技术. 自动化学报, 2022, 48(9): 2119-2141 doi: 10.16383/j.aas.c201068
Li Tian-Mei, Si Xiao-Sheng, Liu Xiang, Pei Hong. Data-model interactive remaining useful life prediction technologies for stochastic degrading devices with big data. Acta Automatica Sinica, 2022, 48(9): 2119-2141 doi: 10.16383/j.aas.c201068
[17] 蒋珂, 蒋朝辉, 谢永芳, 潘冬, 桂卫华. 基于动态注意力深度迁移网络的高炉铁水硅含量在线预测方法. 自动化学报, DOI: 10.16383/j.aas.c210524"> 10.16383/j.aas.c210524
Jiang Ke, Jiang Zhao-Hui, Xie Yong-Fang, Pan Dong, Gui Wei-Hua. Online prediction method for silicon content of molten iron in blast furnace based on dynamic attention deep transfer network. Acta Automatica Sinica, DOI: 10.16383/j.aas.c210524"> 10.16383/j.aas.c210524
[18] Box G E, Jenkins G M, Reinsel G C, Ljung G M. Time Series Analysis: Forecasting and Control. Hoboken: John Wiley & Sons, 2015.
[19] Xie J, Wang Q. Benchmarking machine learning algorithms on blood glucose prediction for type I diabetes in comparison with classical time-series models. IEEE Transactions on Biomedical Engineering, 2020, 67(11): 3101-3124 doi: 10.1109/TBME.2020.2975959
[20] Moniri A, Terracina D, Rodriguez-Manzano J, Strutton P H, Georgiou P. Real-time forecasting of sEMG features for trunk muscle fatigue using machine learning. IEEE Transactions on Biomedical Engineering, 2021, 68(2): 718-727 doi: 10.1109/TBME.2020.3012783
[21] Michalis K T. Variational learning of inducing variables in sparse Gaussian processes. In: Proceedings of the 12th International Conference on Artificial Intelligence and Statistics. Florida, USA: PMLR, 2009. 567−574
[22] Beckers T, Hirche S. Prediction with approximated gaussian process dynamical models. IEEE Transactions on Automatic Control, 2022, 68: 6460-6473
[23] Lee S I, Mortazavi B, Hoffman H A, Lu D S, Li C, Paak B H, et.al. A prediction model for functional outcomes in spinal cord disorder patients using gaussian process regression. IEEE Transactions on Biomedical Engineering, 2016, 20(1): 91-99
[24] Huang H, Song Y, Peng X, Ding S X, Zhong W, Du W, et.al. A sparse nonstationary trigonometric gaussian process regression and its application on nitrogen oxide prediction of the diesel engine. IEEE Transactions on Industrial Informatics, 2021, 17(12): 8367-8377 doi: 10.1109/TII.2021.3068288
[25] 史大威, 蔡德恒, 刘蔚, 王军政, 纪立农. 面向智能血糖管理的餐前胰岛素剂量贝叶斯学习优化方法. 自动化学报, DOI: 10.16383/j.aas.c210067
Shi Da-Wei, Cai De-Heng, Liu Wei, Wang Jun-Zheng, Ji Li-Nong. Bayesian learning based optimization of meal bolus dosage for intelligent glucose management. Acta Automatica Sinica, DOI: 10.16383/j.aas.c210067
[26] 金哲豪, 刘安东, 俞立. 基于GPR和深度强化学习的分层人机协作控制. 自动化学报, 2022, 48(9): 1-11
Jin Zhe-Hao, Liu An-Dong, Yu Li. Hierarchical human-robot cooperative control based on GPR and DRL. Acta Automatica Sinica, 2022, 48(9): 1-11
[27] Rosolia U, Zhang X, Borrelli F. Data-driven predictive control for autonomous systems. Annual Review of Control, Robotics, and Autonomous Systems, 2018, 1(1): 259-286 doi: 10.1146/annurev-control-060117-105215
[28] Yu M. Human-performance engineering at high altitude. Science Supp, 2014: 7−8
[29] Chen J, Xiao R, Wang L, Zhu L, Shi D. Unveiling interpretable key performance indicators in hypoxic response: a system identification approach. IEEE Transactions on Industrial Electronics, 2022, 69(12): 13676-13685 doi: 10.1109/TIE.2021.3137618
[30] Chen J, Tian Y, Zhang G, Cao Z, Zhu L, Shi D. IoT-enabled intelligent dynamic risk assessment of acute mountain sickness: The role of event-triggered signal processing. IEEE Transactions on Industrial Informatics, 2023, 19(1): 730−738