[1] 李力, 王飞跃. 地面交通控制的百年回顾和未来展望. 自动化学报, 2018, 44(4): 577--583 doi: 10.16383/j.aas.2018.c170616LI Li, WANG Fei-Yue. Ground traffic control in the past century and its future perspective. ACTA AUTOMATICA SINICA, 2018, 44(4): 577--583 doi: 10.16383/j.aas.2018.c170616
[2] Fryman J, Matthias B. Safety of industrial robots: From conventional to collaborative applications. In: Proceedings of Conference of Robotik, 7th German Conference on Robotics. Munich, Germany: VDE, 2012.
[3] Kalra N, Paddock S M. Driving to safety: how many miles of driving would it take to demonstrate autonomous vehicle reliability. Transportation Research Part A Policy & Practice, 2016, 94(12): 182--193
[4] 赵祥模, 承靖钧, 徐志刚, 王文威, 王润民, 王冠群, 等. 基于整车在环仿真的自动驾驶汽车室内快速测试平台. 中国公路学报, 2019, 32(6): 124--136 doi: 10.19721/j.cnki.1001-7372.2019.06.013ZHAO Xiang-Mo, CHENG Jing-Jun, XU Zhi-Gang, WANG Wen-Wei, WANG Run-Min, WANG Guan-Qun, et al. An indoor rapid-testing platform for autonomous vehicle based on vehicle-in-the-loop simulation. China Journal of Highway and Transport, 2019, 32(6): 124--136 doi: 10.19721/j.cnki.1001-7372.2019.06.013
[5] Riedmaier S, Ponn T, Ludwig D, Schick B, and Diermeyer F. Survey on scenario-based safety assessment of automated vehicles, IEEE access, 2020, 8: 87456–-87477 doi: 10.1109/ACCESS.2020.2993730
[6] Sun J, Zhang H, Zhou H, Yu R, Tian Y. Scenario-Based test automation for highly automated vehicles: a review and paving the way for systematic safety assurance, IEEE Transactions on Transportation Systems, 2022, 9(23): 14088-–14103
[7] 张浩杰, 苏治宝, 杨甜甜. 基于USARSim和ROS的无人平台编队仿真系统. 自动化学报, 2021, 47(6): 1390−1400Intelligent Zhang H, Su Z, Yang T. Design of team formation simulation system for unmanned ground vehicles based on USARSim and ROS. Acta Automatica Sinica, 2021, 47(6): 1390--1400
[8] Wyatt S, Haering J, Feilhauer M. Current approaches in HiL-Based ADAS testing. SAE International Journal of Commercial Vehicles, 2016, 9(2): 63--69 doi: 10.4271/2016-01-8013
[9] ISO/BS PAS 21448, Road Vehicles. Safety of the Intended Functionality, 2019.
[10] 翟强, 程洪, 黄瑞, 詹慧琴, 赵洋, 李骏. 智能汽车中人工智能算法应用及其安全综述. 电子科技大学学报, 2020, 49(04): 490--498, 510ZHAI Qiang, CHENG Hong, HUANG Rui, ZHAN Hui-Qin, ZHAO Yang, LI Jun. Review on the application and safety of artificial intelligence algorithms in intelligent vehicles.Journal of University of Electronic Science and Technology of China, 2020, 49(04):490--498, 510
[11] 邓伟文, 李江坤, 任秉韬, 王文奇, 丁娟. 面向自动驾驶的仿真场景自动生成方法综述. 中国公路学报, 2022, 35(1): 316--333 doi: 10.3969/j.issn.1001-7372.2022.01.027DENG Wei-Wen, LI Jiang-Kun, REN Bing-Tao, WANG Wen-Qi, DING Juan. A survey on automatic simulation scenario generation methods for autonomous driving. China Journal of Highway and Transport, 2022, 35(1): 316--333 doi: 10.3969/j.issn.1001-7372.2022.01.027
[12] 陈吉清, 舒孝雄, 兰凤崇, 王俊峰. 典型危险事故特征的自动驾驶测试场景构建. 华南理工大学学报: 自然科学版, 2021, 49(5): 1--8CHEN Ji-Qing, SHU Xiao-Xiong, LAN Feng-Chong, WANG Jun-Feng. Construction of autonomous vehicles test scenarios with typical dangerous accident characteristics. Journal of South China University of Technology: Natural Science Edition, 2021, 49(5): 1--8
[13] 王润民, 朱宇, 赵祥模, 徐志刚, 周文帅, 刘童. 自动驾驶测试场景研究进展. 交通运输工程学报, 2021, 21(02): 21--37 doi: 10.19818/j.cnki.1671-1637.2021.02.003WANG Run-min, ZHU Yu, ZHAO Xiang-Mo, XU Zhi-Gang, ZHOU Wen-Shuai, LIU Tong. Research progress of automatic driving test scenario. Journal of Transportation Engineering, 2021, 21(02): 21--37 doi: 10.19818/j.cnki.1671-1637.2021.02.003
[14] 朱冰, 张培兴, 赵健. 面向多维度逻辑场景的自动驾驶安全性聚类评价方法. 汽车工程, 2020, 42(11): 1458--1463, 1505 doi: 10.19562/j.chinasae.qcgc.2020.11.002ZHU Bing, ZHANG Pei-Xing, ZHAO Jian. Autonomous driving safety cluster evaluation method for multi-dimensional logic scenarios. Automotive Engineering, 2020, 42(11): 1458--1463, 1505 doi: 10.19562/j.chinasae.qcgc.2020.11.002
[15] Menzel T, Bagschik G, Maurer M. Scenarios for develop-ment, test and validation of automated vehicles. In: Proceedings of IEEE Intelligent Vehicles Symposium (IV). Changshu, China: IEEE, 2018. 1821−1827
[16] Jesenski S, Stellet J E, Schiegg F, Zollner J M. Generation of scenes in intersections for the validation of highly automated driving functions. In: Proceedings of IEEE Intelligent Vehicles Symposium. Paris, France: IEEE, 2019. 502−509
[17] Ding W, Xu M, Zhao D. Learning to collide: An adaptive safety-critical scenarios generating method. arXiv preprint arXiv: 1707.04792, 2020.
[18] Feng S, Feng Y, Yu C, Zhang Y, Liu H X. Testing scenario library generation for connected and automated vehicles, part I: methodology. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(3): 1573--1582 doi: 10.1109/TITS.2020.2972211
[19] Feng S, Feng Y, Yu C., Zhang Y, Liu H X. (2021). Testing scenario library generation for connected and automated vehicles, part Ⅱ: case studies. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(9): 5635--5647 doi: 10.1109/TITS.2020.2988309
[20] Feng S, Feng Y, Yu C, Zhang Y, Liu H X. Intelligent driving intelligence test for autonomous vehicles with naturalistic and adversarial environment. Nature Communications, 2021, 12(1):1--14 doi: 10.1038/s41467-020-20314-w
[21] 周文帅, 朱宇, 赵祥模, 王润民, 徐志刚. 面向高速公路车辆切入场景的自动驾驶测试用例生成方法. 汽车技术, 2021, (1): 11--18 doi: 10.19620/j.cnki.1000-3703.20191450ZHOU Wen-Shuai, ZHU Yu, ZHAO Xiang-Mo, WANG Run-Min, XU Zhi-Gang. Vehicle cut-in test case generation methods for testing of autonomous driving on highway. Automobile Technology, 2021(1): 11--18 doi: 10.19620/j.cnki.1000-3703.20191450
[22] Sun J, Zhou H, Xi H, Zhang H, and Tian Y. Adaptive design of experiments for safety evaluation of automated vehicles. IEEE Transactions on Intelligent Transportation Systems, 2022, 9(22):14497--14508