【视频专栏】城市固废焚烧过程智能优化控制研究现状与展望

文摘   科技   2023-12-14 17:00   北京  

点击上方蓝字关注我们


汤健, 夏恒, 余文, 乔俊飞. 城市固废焚烧过程智能优化控制研究现状与展望. 自动化学报, 2023, 49(10): 2019−2059

1

摘要

       针对全球城市固废(Municipal solid waste, MSW)的高增长率导致城市环境持续恶化以至于“垃圾围城”现象日益增多等问题, MSW焚烧(MSW incineration, MSWI)技术能够通过发酵、燃烧、换热和净化等工艺实现废物变能源(Waste-to-energy, WTE). 在当前“双碳战略”和“蓝天净土”的新环保背景下, 作为未来长时期内MSW处理主流方式和生态文明建设与循环经济体系托底工业的MSWI过程正面临着重大机遇. 如何融合人工智能、大数据、云计算等技术实现MSWI的智慧化、低碳化和绿色化可持续性发展是目前具有挑战性的难题. 对此, 本文首先描述MSWI工艺机理, 分析其运行控制特性和实现其智能优化控制存在的难点; 然后, 从燃烧特性分析与建模、燃烧过程控制、指标建模与预测、运行监控与故障识别、操作(控制)变量优化、算法仿真验证平台等6个方面进行综述; 接着, 分析MSWI过程智能优化控制研究的必要性; 最后, 结合工业人工智能的本质给出未来研究方向. 在此基础上, 展望基于数字孪生平台的MSWI智能优化控制系统的框架和愿景, 并总结未来挑战.


2

引言

      目前, 城市固废(Municipal solid waste, MSW)的全球年增长率已达到8% ~ 10%[1-2]. 相应地, 我国面临着环境恶化甚至“垃圾围城”风险的城市日趋增多[3], 为发展环境友好型城市必须解决上述问题. MSW焚烧(MSW incineration, MSWI)过程作为典型流程工业[4-5], 通过发酵、燃烧、换热和净化等工艺阶段实现废物到能源(Waste-to-energy, WTE)的转变[1, 6], 其中: 固废发酵阶段存在多种不确定的生物反应, 固废燃烧是固气液多相和热流力多场交互作用下的高温化学反应, 余热交换是实现热能到机械能再到电能的转换, 烟气净化是利用物理/化学原理脱除烟气中的有毒有害物质; 该过程在实现自身运行所需能源自给自足的基础上, 向外提供电和热等多种形式的能源, 并确保较低的环境污染排放风险[7], 使得MSW已经成为城市可再生能源循环利用过程中的重要环节[8-9]. 研究表明, MSWI的减质率、减容率和能量回收率可达到70%、90%和19%[10-11], 其在经济和环保方面所呈现出的潜在价值已被发展中国家所认可[10]. 因此, MSWI过程在低碳、环保和可持续能源等领域均具有关键作用[12], 已成为国家新时期生态文明建设和循环经济体系中的托底工业[13-14].


我国MSWI起步于20世纪90年代(深圳引进日本三菱2台150 t/d马丁炉排焚烧炉), 在十二五时期着力推广后再经过十三五时期无废城市规划的实施, 目前MSWI处理占比(超过50%)已居世界首位[15]. 截止2022年10月, 我国已投运MSWI电厂811座, 其中机械炉排炉占比超过94%[16].

在“十四五”城镇生活垃圾分类和处理设施发展规划下, MSWI过程将迎来新一轮的高速发展[17]. 显然, 在“双碳战略”[18]、垃圾分类[19]和原生MSW“零填埋”[20-21]的发展背景下, MSWI在未来仍将是MSW处理的首选技术[22], 也是城市可持续发展和绿色环保不可或缺的组成部分[23]. 然而, 目前我国MSWI企业却面临着显著的、短期内无法有效调控的发展矛盾, 即过程运维成本、环保监管成本、“国补退坡”[24]、MSW处理微利之间的矛盾, 这是我国MSWI行业面临的最大挑战. 此外, 虽然MSWI过程是最科学的MSW处理方式, 但所产生的废气、废水和废渣却使其自身被列入污染排放名单, 更甚者是其所排放的世纪之毒二噁英(Dioxin, DXN)导致焚烧建厂一直受困于“邻避效应” [2, 25].

经过近半个世纪的发展, 自动化技术、计算机技术和焚烧设备与工艺的有机结合, 促使MSWI控制系统逐渐向大型化、集成化和智慧化的方向发展[2]. 目前已投运、在建和拟建的MSWI厂中, 多采用炉排炉型焚烧炉、高参数锅炉发电设备、渐进累加式烟气净化工艺, 目的是推进企业低碳转型、提高经济效益和竞争力[16, 26]. 但是, MSW的组成和产生受到社会、经济和环境等诸多不确定性与地区性因素的影响[27-28], 大型化的运行设备也导致临界条件下实现MSWI过程高效稳定控制的难度进一步加大. 同时, 《生活垃圾焚烧发电厂自动监测数据应用管理规定》 要求企业全面公开污染物排放数据, 以服务于公众监督和环保监管要求[29]. 此外, 在 “双碳战略” 和 “蓝天净土” 新环保要求的大背景下, MSWI技术的发展方向必然是高负荷、高效率和绿色化[30-32]. 上述原因导致MSWI电厂在智能运维、智慧环保等方面均面临着巨大的挑战[33].


此外, 虽然自动化和信息化水平不断提升, 但我国的MSWI过程却多采用领域专家手动控制模式, 这显然难以适应智慧焚烧的需求[34], 导致焚烧行业的整体运营难以有效满足国家对污染排放的监管要求. 生活垃圾焚烧发电厂自动监测数据公开平台的数据表明, 自2020年以来已关闭MSWI电厂21家, 涉及焚烧炉50余台, 其中炉排炉占比44%[16]. 因此, 研制具有甚至超越优秀领域专家水平的智能优化控制技术, 已成为MSWI企业能够以稳定、高效、绿色和低碳的最优工况达到年运行8000小时水平的关键, 进而实现处理量最大、热灼减率最小、发电量最大、物耗最小和污染排放最低等目标, 确保MSWI行业的可持续性发展.


综上, 本文首先针对典型MSWI工艺机理、当前运行控制特性及智能优化控制存在难点进行描述和分析; 接着, 从燃烧特性分析与建模、燃烧过程控制、指标建模与预测、运行监测与故障识别、操作(控制)变量优化、算法仿真验证平台等6个方面进行MSWI过程运行控制现状的回顾和总结, 探讨进行智能优化控制的必要性; 然后, 结合工业人工智能本质给出未来研究方向和内容, 展望基于数字孪生平台的未来MSWI智能优化控制系统的框架和愿景; 最后, 总结未来挑战.


3

正文框架

1. MSWI过程特性分析

  1.1 MSWI处理工艺

  1.2 国内MSWI过程的运行控制特性

  1.3 MSWI过程智能优化控制存在的难点

2. MSWI过程运行控制研究现状

  2.1 燃烧过程建模与特性分析研究

  2.2 燃烧过程控制研究

  2.3 运行指标建模与预测研究

  2.4 运行监控与故障识别研究

  2.5 操作变量(控制变量)优化研究

  2.6 算法仿真验证平台研究

3. MSWI过程智能优化控制讨论与分析

  3.1 MSWI过程智能优化控制的必要性

  3.2 MSWI过程智能优化控制的发展方向

  3.3 MSWI智能优化控制系统愿景

4. 结论


部分文献


[1] Gómez-Sanabria A, Kiesewetter G, Klimont Z, Schoepp W, Haberl H. Potential for future reductions of global GHG and air pollutants from circular waste management systems. Nature Communications, 2022, 13(1): Article No. 106 doi: 10.1038/s41467-021-27624-7


[2] 乔俊飞, 郭子豪, 汤健. 面向城市固废焚烧过程的二噁英排放浓度检测方法综述. 自动化学报, 2020, 46(6): 1063-1089

Qiao Jun-Fei, Guo Zi-Hao, Tang Jian. Dioxin emission concentration measurement approaches for municipal solid wastes incineration process: A survey. Acta Automatica Sinica, 2020, 46(6): 1063-1089


[3] 陈安, 陈晶睿, 崔晶, 范超, 韩玮. 中国31个直辖市和省会(首府)城市”垃圾围城”风险与对策研究—基于DIIS方法的实证研究. 中国科学院院刊, 2019, 34(7): 797-806

Chen An, Chen Jing-Rui, Cui Jing, Fan Chao, Han Wei. Research on risks and countermeasures of “cities besieged by waste” in China-an empirical analysis based on DIIS. Bulletin of Chinese Academy of Sciences, 2019, 34(7): 797-806


[4] Walser T, Limbach L K, Brogioli R, Erismann E, Flamigni L, Hattendorf B, et al. Persistence of engineered nanoparticles in a municipal solid-waste incineration plant. Nature Nanotechnology, 2012, 7(8): 520-524 doi: 10.1038/nnano.2012.64


[5] Xia H, Tang J, Aljerf L. Dioxin emission prediction based on improved deep forest regression for municipal solid waste incineration process. Chemosphere, 2022, 294: Article No. 133716 doi: 10.1016/j.chemosphere.2022.133716


[6] Vilardi G, Verdone N. Exergy analysis of municipal solid waste incineration processes: The use of O2-enriched air and the oxy-combustion process. Energy, 2022, 239: Article No. 122147 doi: 10.1016/j.energy.2021.122147


[7] 何汶峰, 郑宇, 刘蓓蓓, 张炳. 垃圾分类政策对垃圾焚烧大气污染排放的影响. 中国环境科学, 2022, 42(5): 2433-2441

He Wen-Feng, Zheng Yu, Liu Bei-Bei, Zhang Bing. Effects of garbage classification on air pollutant emissions from garbage incineration. China Environmental Science, 2022, 42(5): 2433-2441


[8] Bajić B Ž, Siniša S N, Vučurović D G, Dodic J M, Grahovac J A. Waste-to-energy status in Serbia. Renewable and Sustainable Energy Reviews, 2015, 50: 1437-1444 doi: 10.1016/j.rser.2015.05.079


[9] Kalyani K A, Pandey K K. Waste to energy status in India: A short review. Renewable and Sustainable Energy Reviews, 2014, 31: 113-120 doi: 10.1016/j.rser.2013.11.020


[10] Kumar A, Samadder S R. A review on technological options of waste to energy for effective management of municipal solid waste. Waste Management, 2017, 69: 407-422 doi: 10.1016/j.wasman.2017.08.046


[11] Liu Y L, Sun W X, Liu J G. Greenhouse gas emissions from different municipal solid waste management scenarios in China: Based on carbon and energy flow analysis. Waste Management, 2017, 68: 653-661 doi: 10.1016/j.wasman.2017.06.0


[12] Kammen D M, Sunter D A. City-integrated renewable energy for urban sustainability. Science, 2016, 352(6288): 922-928 doi: 10.1126/science.aad9302


[13] Korai M S, Mahar R B, Uqaili M A. The feasibility of municipal solid waste for energy generation and its existing management practices in Pakistan. Renewable and Sustainable Energy Reviews, 2017, 72: 338-353 doi: 10.1016/j.rser.2017.01.051


[14] 国家统计局. 中国统计年鉴. 北京: 中国统计出版社, 2021.

National Bureau of Statistics. China Statistical Yearbook. Beijing: China Statistics Press, 2021.


[15] Zhuang J B, Tang J, Aljerf L. Comprehensive review on mechanism analysis and numerical simulation of municipal solid waste incineration process based on mechanical grate. Fuel, 2022, 320: Article No. 123826 doi: 10.1016/j.fuel.2022.123826


[16] 生态环境部. 生活垃圾焚烧发电厂自动监测数据公开平台[Online], available: https://ljgk.envsc.cn/, 2022-12-30

Ministry of Ecology and Environment. Automatic monitoring data disclosure platform for domestic waste incineration power plants [Online], available: https://ljgk.envsc.cn/, December 30, 2022


[17] Zhang L T, Liu G R, Li S M, Yang L L, Chen S. Model framework to quantify the effectiveness of garbage classification in reducing dioxin emissions. Science of the Total Environment, 2022, 814: Article No. 151941 doi: 10.1016/j.scitotenv.2021.151941


[18] 周守为, 朱军龙. 助力“碳达峰、碳中和”战略的路径探索. 天然气工业, 2021, 41(12): 1-8

Zhou Shou-Wei, Zhu Jun-Long. Exploration of ways to helping “carbon peak and neutrality” strategy. Natural Gas Industry, 2021, 41(12): 1-8


[19] He Wen-Feng, Zheng Yu, Liu Bei-Bei, Zhang Bing. Effects of garbage classification on air pollutant emissions from garbage incineration. China Environmental Science, 2022, 42(5): 2433-2441


[20] 国务院. 国务院关于加快建立健全绿色低碳循环发展经济体系的指导意见[Online], available: http://www.gov.cn/zhengce/content/2021-02/22/content_5588274.htm, 2021-02-22

The State Council of the People's Republic of China. The State Council's guiding opinions on accelerating the establishment and improvement of a green and low-carbon circular development economic system [Online], available: http://www.gov.cn/zhengce/content/2021-02/22/content_5588274.htm, February 22, 2021


[21] 李颖, 武学, 孙成双, 耿子洁, 张全红. 基于低碳发展的北京城市生活垃圾处理模式优化. 资源科学, 2021, 43(8): 1574-1588

Li Ying, Wu Xue, Sun Cheng-Shuang, Geng Zi-Jie, Zhang Quan-Hong. Optimization of Beijing municipal solid waste treatment model based on low-carbon development. Resources Science, 2021, 43(8): 1574-1588


[22] Chu Z J, Wang W N, Zhou A, Huang W C. Charging for municipal solid waste disposal in Beijing. Waste Management, 2019, 94: 85-94 doi: 10.1016/j.wasman.2019.05.051


[23] Martínez J H, Romero S, Ramasco J J, Estrada E. The world-wide waste web. Nature Communications, 2022, 13(1): Article No. 1615 doi: 10.1038/s41467-022-28810-x


[24] 殷国良, 杨凯. 垃圾焚烧发电电价补贴政策的演进及其影响分析. 法制与经济, 2021, 30(8): 115-118

Yin Guo-Liang, Yang Kai. Evolution and impact analysis of electricity price subsidy policy for waste incineration power generation. Legal System and Economics, 2021, 30(8): 115-118


[25] Liang X, Kurniawan T A, Goh H H, Zhang D D, Dai W, Liu H, et al. Conversion of landfilled waste-to-electricity (WTE) for energy efficiency improvement in Shenzhen (China): A strategy to contribute to resource recovery of unused methane for generating renewable energy on-site. Journal of Cleaner Production, 2022, 369: Article No. 133078 doi: 10.1016/j.jclepro.2022.133078


[26] 龙吉生, 杜海亮, 邹昕, 黄静颖. 关于城市生活垃圾处理碳减排的系统研究. 中国科学院院刊, 2022, 37(8): 1143-1153

Long Ji-Sheng, Du Hai-Liang, Zou Xin, Huang Jing-Ying. Systematic study on carbon emission reduction of municipal solid waste treatment. Bulletin of Chinese Academy of Sciences, 2022, 37(8): 1143-1153


[27] Khandelwal H, Dhar H, Thalla A K, Kumar S. Application of life cycle assessment in municipal solid waste management: A worldwide critical review. Journal of Cleaner Production, 2019, 209: 630-654 doi: 10.1016/j.jclepro.2018.10.233


[28] Kolekar K A, Hazra T, Chakrabarty S N. A review on prediction of municipal solid waste generation models. Procedia Environmental Sciences, 2016, 35: 238-244 doi: 10.1016/j.proenv.2016.07.087


[29] 黄哲程. 垃圾焚烧发电明年执行新规将公开常规污染物排放数据[Online], available: https://baijiahao.baidu.com/s?id=1652943936485626058&wfr=spider&for=pc, 2019-12-15

Huang Zhe-Cheng. Waste incineration power generation will implement new regulations next year to disclose conventional pollutant emission data [Online], available: https://baijiahao.baidu.com/s?id=1652943936485626058&wfr=spider&for=pc, December 15, 2019


[30] 李娜, 马晓茜, 赵增立, 李海滨, 陈勇. 生物质气化与废弃物焚烧联合发电技术环境效益分析. 农业机械学报, 2007, 38(6): 121-124, 142

Li Na, Ma Xiao-Qian, Zhao Zeng-Li, Li Hai-Bin, Chen Yong. Benefits of biomass gasification and waste incineration combined power technology on CO2 reduction. Transactions of the Chinese Society for Agricultural Machinery, 2007, 38(6): 121-124, 142


[31] 中国动力工程学会, 环保技术与装备专委会. 推广城市垃圾发电应用技术、加强行业服务交流”研讨会在天津举行. 动力工程, 2005, (4): 461

China Power Engineering Committee, Environmental Protection Technology and Equipment Special Committee. Seminar on “promoting urban waste-to-energy application technology and strengthening industry service exchanges” held in Tianjin. Journal of Chinese Society of Power Engineering, 2005, (4): 461


[32] 柴天佑. 工业过程控制系统研究现状与发展方向. 中国科学: 信息科学, 2016, 46(8): 1003-1015 doi: 10.1360/N112016-00062

Chai Tian-You. Industrial process control systems: Research status and development direction. Scientia Sinica Informationis, 2016, 46(8): 1003-1015 doi: 10.1360/N112016-00062


[33] 应雨轩, 林晓青, 吴昂键, 李晓东. 生活垃圾智慧焚烧的研究现状及展望. 化工学报, 2021, 72(2): 886-900

Ying Yu-Xuan, Lin Xiao-Qing, Wu Ang-Jian, Li Xiao-Dong. Review and outlook on municipal solid waste smart incineration. CIESC Journal, 2021, 72(2): 886-900


[34] 桂卫华, 岳伟超, 谢永芳, 张红亮, 阳春华. 铝电解生产智能优化制造研究综述. 自动化学报, 2018, 44(11): 1957-1970

Gui Wei-Hua, Yue Wei-Chao, Xie Yong-Fang, Zhang Hong-Liang, Yang Chun-Hua. A review of intelligent optimal manufacturing for aluminum reduction production. Acta Automatica Sinica, 2018, 44(11): 1957-1970



作者简介



汤健,北京工业大学信息学部教授. 主要研究方向为小样本数据建模, 城市固废处理过程智能控制. 本文通信作者.

夏恒,北京工业大学信息学部博士研究生. 主要研究方向为城市固废焚烧过程二噁英排放预测与控制, 树结构深/宽度学习结构设计与优化.

余文,墨西哥国立理工大学高级研究中心自动化部教授. 主要研究方向为复杂工业过程建模与控制, 机器学习. 

乔俊飞,北京工业大学信息学部教授. 主要研究方向为污水处理过程智能控制, 神经网络结构设计与优化.

【视频专栏】深度对比学习综述

【视频专栏】视网膜功能启发的边缘检测层级模型

【视频专栏】一种新的分段式细粒度正则化的鲁棒跟踪算法

【视频专栏】基于自适应多尺度超螺旋算法的无人机集群姿态同步控制

【视频专栏】基于分层控制策略的六轮滑移机器人横向稳定性控制

【视频专栏】基于改进YOLOX的移动机器人目标跟随方法

自动化学报创刊60周年专刊| 孙长银教授等:基于因果建模的强化学习控制: 现状及展望

【视频专栏】基于多尺度变形卷积的特征金字塔光流计算方法

自动化学报创刊60周年专刊| 柴天佑教授等:端边云协同的PID整定智能系统

【视频专栏】一种同伴知识互增强下的序列推荐方法

自动化学报创刊60周年专刊| 桂卫华教授等:复杂生产流程协同优化与智能控制

【视频专栏】 基于跨模态实体信息融合的神经机器翻译方法

自动化学报创刊60周年专刊| 王耀南教授等:机器人感知与控制关键技术及其智能制造应用

【视频专栏】机器人运动轨迹的模仿学习综述

自动化学报创刊60周年专刊| 于海斌研究员等:无线化工业控制系统: 架构、关键技术及应用

自动化学报创刊60周年专刊| 王飞跃教授等:平行智能与CPSS: 三十年发展的回顾与展望

自动化学报创刊60周年专刊| 陈杰教授等:非线性系统的安全分析与控制: 障碍函数方法

自动化学报创刊60周年专刊| 乔俊飞教授等:城市固废焚烧过程数据驱动建模与自组织控制

自动化学报创刊60周年专刊| 姜斌教授等:航天器位姿运动一体化直接自适应容错控制研究

自动化学报创刊60周年专刊| 王龙教授等:多智能体博弈、学习与控制

》自动化学报创刊60周年专刊| 刘成林研究员等:类别增量学习研究进展和性能评价

《自动化学报》创刊60周年专刊|杨孟飞研究员等:空间控制技术发展与展望

城市固废焚烧过程数据驱动建模与自组织控制

面向全量测点耦合结构分析与估计的工业过程监测方法

《自动化学报》多篇论文入选高影响力论文

》复杂网络能控性鲁棒性研究进展

》解耦表征学习综述

》考虑输出约束的冗余驱动绳索并联机器人预设性能控制 

》面向网络空间防御的对抗机器学习研究综述

【虚拟专题】机器人

》基于事件相机的机器人感知与控制综述

》《自动化学报》广受关注论文合集

2022年第01-07期综述

》【热点专题】多目标优化

》【热点专题】目标检测

》异构集群系统分布式自适应输出时变编队跟踪控制

》深海起重机系统的实时轨迹规划方法

》数据和知识驱动的城市污水处理过程多目标优化控制

》基于池的无监督线性回归主动学习

》基于非线性干扰观测器的飞机全电刹车系统滑模控制设计

综合集成研讨厅体系

传感器饱和的非线性网络化系统模糊H∞滤波

基于区块链的数字货币发展现状与展望
比特驱动的瓦特变革—信息能源系统研究综述

》《自动化学报》兼职编辑招聘启事

》《自动化学报》创刊六十周年学术研讨会第六期

》《自动化学报》创刊六十周年学术研讨会第五期

》自动化学报蝉联百种中国杰出期刊称号

》《自动化学报》20篇文章入选2023“领跑者5000”顶尖论文

》《自动化学报》创刊六十周年学术研讨会第三期

》《自动化学报》创刊六十周年学术研讨会第二期

》《自动化学报》创刊六十周年学术研讨会第一期

》《自动化学报》致谢审稿人(2022年度)

》《自动化学报》13篇文章入选2022“领跑者5000”顶尖论文

》自动化学报连续11年入选国际影响力TOP期刊榜单

》《自动化学报》影响因子6.627,影响因子和影响力指数排名第1

》JAS最新影响因子7.847,排名全球前10%

《自动化学报》17篇文章入选2021“领跑者5000”顶尖论文

》自动化学报多名作者入选爱思唯尔2021中国高被引学者

》自动化学报(英文版)和自动化学报入选计算领域高质量科技期刊T1类

》自动化学报多篇论文入选中国百篇最具影响国内论文和中国精品期刊顶尖论文

》JAS进入中科院分区工程技术和计算机科学类1区、Top期刊

》自动化学报蝉联百种中国杰出期刊称号,入选中国精品科技期刊
》《自动化学报》挺进世界期刊影响力指数Q1区
》《自动化学报》多名作者入选科睿唯安2020年度高被引科学家
》自动化学报排名第一,被评定为中国中文权威期刊
》2023年第11期
》2023年第10期
》2023年第09期
》2023年第08期
》2023年第07期
》2023年第06期
》2023年第05期
》2023年第04期
》《自动化学报》创刊60周年专刊
2023年第01期
2022年第10期
》2022年第09期
2022年第08期
》2022年第07期
2022年第01-06期
2021年第11期
2021年第10期

》2021年第09期

》2021年第08期
》2021年第07期
》2021年第06期
》2021年第05期
》2021年第04期
》2021年第03期
》2021年第02期
》2021年第01期



长按二维码|关注我们

IEEE/CAA Journal of Automatica Sinica (JAS)

长按二维码|关注我们

《自动化学报》服务号

联系我们

网站: 

http://www.aas.net.cn

https://www.ieee-jas.net

投稿: 

https://mc03.manuscriptcentral.com/aas-cn 

https://mc03.manuscriptcentral.com/ieee-jas 

电话:  010-82544653(日常咨询和稿件处理) 

           010-82544677(录用后稿件处理)

邮箱:  aas@ia.ac.cn(日常咨询和稿件处理)

           aas_editor@ia.ac.cn(录用后稿件处理)

博客: 

http://blog.sina.com.cn/aasedit

点击阅读原文 了解更多

自动化学报
《自动化学报》是由中国自动化学会、中国科学院自动化研究所共同主办的高级学术期刊。该公众服务号旨在发布学报网刊、期刊动态,为读者提供在线网刊、为作者提供在线查稿、为审者提供在线送审的服务。
 最新文章