又出王炸,ChatGPT4o! 强烈建议大家学一学…

文摘   2024-06-19 14:16   北京  

1、AquaCrop模型农业水资源管理及代码解析培训班

2、土壤风蚀模拟与风蚀模数估算、变化归因分析中的实践应用及SCI论文撰写培训班

3、最新【5天】基于LEAP模型在能源环境发展、碳排放建模预测及分析中实践应用高级培训班

4、基于R语言BIOMOD2 及机器学习方法的物种分布模拟与案例分析培训班

5、基于ChatGPT-4o自然科学研究全流程实践技术应用培训班

6、最新全流程ChatGPT办公与科研应用、论文撰写、数据分析、机器学习、深度学习及AI绘图高级培训班



     自然科学研究遵循严谨的科学方法论,包括文献调研、问题综述、试验设计、提出假设、数据清洗、统计诊断、大数据分析、经典统计模型(回归模型、混合效应模型、结构方程模型、Meta分析模型)、参数优化、机器/深度学习、大尺度模型构建与模拟、论文辅助阅读、论文写作、翻译、润色、审稿、科研绘图、GIS绘图、概念图绘制、项目基金撰写及润色等过程。以ChatGPT-4o代表AI大语言模型引领了新一波人工智能浪潮,也在自然科学各个过程中提升生产力,本课程通过生物、地球、农业、气象、生态、环境、GIS科学领域中的大量案例,结合数据、文本、图片、代码、语音、视频等不同形式的数据、模式和内容,讲解自然科研的全流程,通过大模型辅助编写Python和R语言代码以及大模型API二次开发等技术对案例进行实现,带领大家快速进入科研新范式。

      科学领域中案例,解锁大模型在科研、办公中的高级应用,一起探索如何优雅地使用大模型。

一、组织机构


主办单位:Ai尚研修

承办单位:中科资环(保定)信息技术有限公司


二、培训时间及方式


培训时间:2024年7月20日-21日、27日-28日

每日授课:7月20日、27日 【晚19:30-22:00】、21日、28日全天授课

网络直播+助学群辅助+导师面对面实践工作交流

三、导师随行


1、建立导师助学交流群,长期进行答疑及经验分享,辅助学习及应用。

2、课程结束后不定期召开线上答疑交流,辅助学习巩固工作实践问题处理交流


四、发票及学时证明



五、课程内容


课程安排

学习内容

专题一

开启自然科学研究新范式

1、基于ChatGPT-4o开启科研新范式

1) 自然科学研究的主要流程

2) AI大模型的助力科研新范式

3) AI大模型的提问框架(提示词、指令)和专业级GPT store应用

案例1.1:开启大模型科研新范式

案例1.2:大模型助力自然科学的经典案例分析

案例1.3:经典高效的提问模板,提升模型效率

专题

基于ChatGPT大模型的论文写作

2、科学论文写作全面提升

案例2.1大模型论文润色中英文提问模板

案例2.2使用大模型进行论文润色

案例2.3使用大模型对英文文献进行搜索

案例2.4使用大模型对英文文献进行问答和辅助阅读

案例2.5使用大模型提取英文文献关键信息

案例2.6使用大模型对论文进行摘要重写

案例2.7使用大模型取一个好的论文标题

案例2.8使用大模型写论文框架和调整论文结构

案例2.9使用大模型对论文进行翻译

案例2.10使用大模型对论文进行评论,辅助撰写审稿意见

案例2.11使用大模型对论文进行降重

案例2.12使用大模型查找研究热点

案例2.13使用大模型对你的论文凝练成新闻和微信文案

案例2.14使用大模型对拓展论文讨论

案例2.15使用大模型辅助专著、教材、课件的撰写

专题

基于

ChatGPT大模型的数据清洗

3、数据清洗与特征工程

1) R语言和Python基础(能看懂即可)

2) 数据清洗方法(重复值、缺失值处理、异常值检验、标准化、归一化、数据长宽转换,数据分组聚合)

案例3.1:使用大模型指令随机生成数据

案例3.2:使用大模型指令读取各种类型的数据

案例3.3:使用大模型指令进行原始数据进行清洗、切片、筛选、整合

案例3.4:使用大模型指令对农业气象数据进行预处理

案例3.5:使用大模型指令对生态数据进行预处理

专题

基于ChatGPT大模型的统计分析

4、统计分析与模型诊断

1) 统计假设检验

2) 统计学三大常用检验及其应用场景

3) 方差分析、相关分析、回归分析

案例4.1:使用大模型对生态环境数据进行正态性检验、方差齐性检验

案例4.2:使用大模型进行t检验、F检验和卡方检验

案例4.3:使用大模型对生态环境数据进行方差分析、相关分析及回归分析

 

专题

基于ChatGPT经典统计模型

5、经典统计模型(混合效应模型、结构方程模型、Meta分析)构建

案例5.1:基于AI辅助构建的混合线性模型在生态学中应用

案例5.2:基于AI辅助的全球尺度Meta分析、诊断及绘图

案例5.3:基于AI辅助的生态环境数据结构方程模型构建

 

专题

基于ChatGPT优化算法

6、模型参数及目标优化算法

案例6.1:最小二乘法对光合作用模型参数优化

案例6.2:遗传算法、差分进化算法对光合作用模型参数优化

案例6.3:贝叶斯定理和贝叶斯优化算法对机理模型参数优化

案例6.4:蒙特拉罗马尔科夫链MCMC对动力学模型进行参数优化 

专题

基于ChatGPT大模型的机器学习

7、机器/深度学习在科研中的应用

1) 机器/深度学习

2) 线性代数基础、特征值和特征向量

3) 机器学习监督学习(回归、分类)、非监督学习(降维、聚类)

4) 特征工程、数据分割、目标函数、参数优化、交叉验证、超参数寻优

5) 主成分分析、LDA、NMS、T-SNE、UMAP、Kmeans、Agglomerative、DBSCAN

6) 支持向量机、决策树、随机森林、XGBoost、AdaBoost、LightGBM、高斯过程

7) 深度学习算法(神经网络、激活函数、交叉熵、优化器)

8) AI大模型的底层逻辑和算法结构(GPT1-GPT4)

9) 卷积神经网络、长短期记忆网络(LSTM)

案例7.1:使用大模型指令构建回归模型(多元线性回归、随机森林、XGBoost、LightGBM等)

案例7.2:使用大模型指令构建分类模型(支持向量机、XGBoost等)

案例7.3:使用大模型指令构建降维模型

案例7.4:使用大模型指令构建聚类模型

案例7.5:使用大模型指令构建卷积神经网络进行图像识别

案例7.6:使用大模型指令构建LSTM模型进行气象环境时序预测

 

 

专题

ChatGPT的二次开发

8、基于AI大模型的二次开发

案例8.1:基于API构建自己的本地大模型

案例8.2:基于构建的本地大模型实现ChatGPT功能、模型评价和图像生成

案例8.3:ChatGPT Store构建方法

专题

基于ChatGPT大模型的科研绘图

9、基于AI大模型的科研绘图

1) 使用大模型进行数据可视化

案例9.1:大模型科研绘图指定全集

案例9.2:使用大模型指令绘制柱状图(误差线)、散点图、相关网络图、热图、小提琴图、箱型图、雷达图、玫瑰图、气泡图、森林图、三元图、三维图等各类科研图

案例9.3:使用大模型指令对图形进行修改

案例9.4:使用大模型对任务一类科研绘图的制作流程

  


专题

基于ChatGPT时空大数据分析

10、基于ChatGPT的时空大数据分析应用

1) R语言和Python空间数据处理主要方法

2) 基于AI大模型训练降尺度模型

3) 基于AI大模型处理矢量、栅格数据

4) 基于AI大模型处理多时相netCDF4数据

案例10.1:使用大模型对矢量、栅格等时空大数据进行处理

案例10.2:使用大模型处理NASA气象多时相NC数据

案例10.3:使用大模型绘制全球植被类型分布图

案例10.4:使用大模型栅格数据并绘制全球植被生物量图

案例10.5:使用大模型处理遥感数据并进行时间序列分析

案例10.6:使用不同插值方法对气象数据进行空间插值

案例10.7:使用大模型使用机器学习聚类分析及气候空间分区

案例10.8:使用大模型构建机器学习模型进行大尺度空间预测

   

专题十一

基于ChatGPT大模型的项目基金助手

11、基于AI大模型的项目基金助手

1) 基金申请讲解

2) 基因评审重点

案例11.1使用大模型进行项目选题和命题

案例11.2使用大模型进行项目书写作和语言润色

案例11.3使用大模型进行项目书概念图绘制

专题十

基于大模型的AI绘图

12、基于大模型的AI绘图

1)GPT DALL.E、Midjourney等AI大模型生成图片讲解

2)AI画图指令套路和参数设定

案例13.1:使用大模型进行图像识别

案例13.2:使用大模型生成图像指令合集

案例13.3:使用大模型指令生成概念图

案例13.4:使用大模型指令生成地球氮循环概念图

案例13.5:使用大模型指令生成土壤概念图

案例13.6:使用大模型指令生成病毒、植物、动物细胞结构图

案例13.7:使用大模型指令生成图片素材,从此不再缺图片素材

  

注:以上各章节内容均有代码及数据分析实操。















六、联系方式


联系人:杨帆老师 15383229128  微信同号




七、近期课程安排



2024年6月22日-23日、29日【三天实践课程,提供全部资料及回放】

每日授课:上午9:30-12:00  下午14:00-17:30
网络直播+助学群辅助+导师面对面实践工作交流

课程安排

学习内容

专题一

开启自然科学研究新范式

1、基于ChatGPT-4o开启科研新范式

1) 自然科学研究的主要流程

2) AI大模型的助力科研新范式

3) AI大模型的提问框架(提示词、指令)和专业级GPT store应用

案例1.1:开启大模型科研新范式

案例1.2:大模型助力自然科学的经典案例分析

案例1.3:经典高效的提问模板,提升模型效率

专题

基于ChatGPT大模型的论文写作

2、科学论文写作全面提升

案例2.1大模型论文润色中英文提问模板

案例2.2使用大模型进行论文润色

案例2.3使用大模型对英文文献进行搜索

案例2.4使用大模型对英文文献进行问答和辅助阅读

案例2.5使用大模型提取英文文献关键信息

案例2.6使用大模型对论文进行摘要重写

案例2.7使用大模型取一个好的论文标题

案例2.8使用大模型写论文框架和调整论文结构

案例2.9使用大模型对论文进行翻译

案例2.10使用大模型对论文进行评论,辅助撰写审稿意见

案例2.11使用大模型对论文进行降重

案例2.12使用大模型查找研究热点

案例2.13使用大模型对你的论文凝练成新闻和微信文案

案例2.14使用大模型对拓展论文讨论

案例2.15使用大模型辅助专著、教材、课件的撰写

专题

基于

ChatGPT大模型的数据清洗

3、数据清洗与特征工程

1) R语言和Python基础(能看懂即可)

2) 数据清洗方法(重复值、缺失值处理、异常值检验、标准化、归一化、数据长宽转换,数据分组聚合)

案例3.1:使用大模型指令随机生成数据

案例3.2:使用大模型指令读取各种类型的数据

案例3.3:使用大模型指令进行原始数据进行清洗、切片、筛选、整合

案例3.4:使用大模型指令对农业气象数据进行预处理

案例3.5:使用大模型指令对生态数据进行预处理

专题

基于ChatGPT大模型的统计分析

4、统计分析与模型诊断

1) 统计假设检验

2) 统计学三大常用检验及其应用场景

3) 方差分析、相关分析、回归分析

案例4.1:使用大模型对生态环境数据进行正态性检验、方差齐性检验

案例4.2:使用大模型进行t检验、F检验和卡方检验

案例4.3:使用大模型对生态环境数据进行方差分析、相关分析及回归分析

 

专题

基于ChatGPT经典统计模型

5、经典统计模型(混合效应模型、结构方程模型、Meta分析)构建

案例5.1:基于AI辅助构建的混合线性模型在生态学中应用

案例5.2:基于AI辅助的全球尺度Meta分析、诊断及绘图

案例5.3:基于AI辅助的生态环境数据结构方程模型构建

 

专题

基于ChatGPT优化算法

6、模型参数及目标优化算法

案例6.1:最小二乘法对光合作用模型参数优化

案例6.2:遗传算法、差分进化算法对光合作用模型参数优化

案例6.3:贝叶斯定理和贝叶斯优化算法对机理模型参数优化

案例6.4:蒙特拉罗马尔科夫链MCMC对动力学模型进行参数优化

 

专题

基于ChatGPT大模型的机器学习

7、机器/深度学习在科研中的应用

1) 机器/深度学习

2) 线性代数基础、特征值和特征向量

3) 机器学习监督学习(回归、分类)、非监督学习(降维、聚类)

4) 特征工程、数据分割、目标函数、参数优化、交叉验证、超参数寻优

5) 主成分分析、LDA、NMS、T-SNE、UMAP、Kmeans、Agglomerative、DBSCAN

6) 支持向量机、决策树、随机森林、XGBoost、AdaBoost、LightGBM、高斯过程

7) 深度学习算法(神经网络、激活函数、交叉熵、优化器)

8) AI大模型的底层逻辑和算法结构(GPT1-GPT4)

9) 卷积神经网络、长短期记忆网络(LSTM)

案例7.1:使用大模型指令构建回归模型(多元线性回归、随机森林、XGBoost、LightGBM等)

案例7.2:使用大模型指令构建分类模型(支持向量机、XGBoost等)

案例7.3:使用大模型指令构建降维模型

案例7.4:使用大模型指令构建聚类模型

案例7.5:使用大模型指令构建卷积神经网络进行图像识别

案例7.6:使用大模型指令构建LSTM模型进行气象环境时序预测

 

 

专题

ChatGPT的二次开发

8、基于AI大模型的二次开发

案例8.1:基于API构建自己的本地大模型

案例8.2:基于构建的本地大模型实现ChatGPT功能、模型评价和图像生成

案例8.3:ChatGPT Store构建方法

专题

基于ChatGPT大模型的科研绘图

9、基于AI大模型的科研绘图

1) 使用大模型进行数据可视化

案例9.1:大模型科研绘图指定全集

案例9.2:使用大模型指令绘制柱状图(误差线)、散点图、相关网络图、热图、小提琴图、箱型图、雷达图、玫瑰图、气泡图、森林图、三元图、三维图等各类科研图

案例9.3:使用大模型指令对图形进行修改

案例9.4:使用大模型对任务一类科研绘图的制作流程

  


专题

基于ChatGPT时空大数据分析

10、基于ChatGPT的时空大数据分析应用

1) R语言和Python空间数据处理主要方法

2) 基于AI大模型训练降尺度模型

3) 基于AI大模型处理矢量、栅格数据

4) 基于AI大模型处理多时相netCDF4数据

案例10.1:使用大模型对矢量、栅格等时空大数据进行处理

案例10.2:使用大模型处理NASA气象多时相NC数据

案例10.3:使用大模型绘制全球植被类型分布图

案例10.4:使用大模型栅格数据并绘制全球植被生物量图

案例10.5:使用大模型处理遥感数据并进行时间序列分析

案例10.6:使用不同插值方法对气象数据进行空间插值

案例10.7:使用大模型使用机器学习聚类分析及气候空间分区

案例10.8:使用大模型构建机器学习模型进行大尺度空间预测

   

专题十一

基于ChatGPT大模型的项目基金助手

11、基于AI大模型的项目基金助手

1) 基金申请讲解

2) 基因评审重点

案例11.1使用大模型进行项目选题和命题

案例11.2使用大模型进行项目书写作和语言润色

案例11.3使用大模型进行项目书概念图绘制

专题十

基于大模型的AI绘图

12、基于大模型的AI绘图

1)GPT DALL.E、Midjourney等AI大模型生成图片讲解

2)AI画图指令套路和参数设定

案例13.1:使用大模型进行图像识别

案例13.2:使用大模型生成图像指令合集

案例13.3:使用大模型指令生成概念图

案例13.4:使用大模型指令生成地球氮循环概念图

案例13.5:使用大模型指令生成土壤概念图

案例13.6:使用大模型指令生成病毒、植物、动物细胞结构图

案例13.7:使用大模型指令生成图片素材,从此不再缺图片素材

  

注:以上各章节内容均有代码及数据分析实操。




培训时间:6月24日、26日-27日、7月1日【四天实践课程,提供全部资料及回放】

每日授课:上午9:30-12:00  下午14:00-17:30
网络直播+助学群辅助+导师面对面实践工作交流

课程安排

学习内容

专题一

模型原理与数据要求

1. AquaCrop模型的应用范围

2. 模型基本原理与计算框架

3.模型输入数据要求

4.模型应用实例简介

专题二

模型数据准备

1.气象数据准备:包括温度、降水量、蒸发量等。

2.土壤数据制备:土壤类型、含水量、水分保持能力

3.农作物数据制备:作物类型、生长周期、水分需求

4.管理措施的输入:灌溉方式、施肥计划、病虫害管理。

专题三

模型运行及结果分析

1.模型运行步骤

2.模型输出

3.模型结果分析(在线版)

专题四

参数分析

1.敏感性分析方法

2.模型敏感参数

3.参数的不确定性分析方法

4.参数的不确定性分析

5.参数调优建议

专题五

源代码分析

1.现代Fortran基础

2.模型Fortran代码编译

3.模型代码结构

4.模型入口分析

5.模型主要计算功能分析

注:以上各章节内容均有代码及数据分析实操。




培训时间:7月20日-21日、27日-28日【四天实践课程,提供全部资料及回放】

每日授课:上午9:30-12:00  下午14:00-17:30
网络直播+助学群辅助+导师面对面实践工作交流


课程安排

学习内容

第一章:

引入和理论基础

 课程介绍:目标、流程和期望成果。

 生态模型基础:介绍生态模型的基本概念和物种分布模型(SDMs)的重要性。

 biomod2简介:探讨biomod2的历史、发展和主要功能。

 R语言重点工具入门:数据输入与输出、科学计算、地理数据分析、数据可视化等功能。

第二章:

数据获取与预处理

 常见地球科学数据讲解(数据特点与获取途径):

1)物种分布数据;

2)环境变量(站点数据、遥感数据)。

 基于R语言的数据预处理:

(1) 数据提取:根据需求批量提取相关数据;

(2) 数据清洗:数据清洗的原则与方法;

(3) 特征变量选择: 通过相关性分析、主成分分析(PCA)等方法选择具有代表性的特征变量,提高模型效率。


第三章:

模型的建立与评估

 机器学习概述与R语言实践

1)机器学习原理;(2)常见机器学习算法与流程

 基于单一机器学习算法的物种分布特征模拟(以最大熵算法为例)。

 biomod2程序包介绍与使用:原理、构成

 实际操作:构建第一个物种分布模型,包括选择模型类型和调整参数。

 模型评估方法:通过ROC曲线、AUC值等方法评估模型的有效性和准确性。

第四章:

模型优化与多模型集成

 典型算法参数优化:对随机森林、最大熵等算法进行参数优化,提高模型性能。

 集成方法:结合多个模型提高预测结果的稳定性和准确性。

 物种分布特征预测: 基于单一模型与集成模型预测物种未来分布特征。

 实战演练:参与者使用自己的数据或示例数据集,尝试实现多模型集成。

第五章:

结果分析和案例研究

 结果分析:物种分布特征、环境变量与物种分布关系、未来分布特征预测。

 科学制图:栅格图、柱状图、降维结果图等。

  

 案例研究:分析物种分布案例,如何应用学到的技能和知识。

 课程总结:回顾学习要点,讨论如何将这些技能应用到未来的研究中。

注:以上各章节内容均有代码及数据分析实操。





八、相关视频课程


提供全套上课资料【课件、案例数据、代码、参考资料等】+课程长期有效+导师群长期辅助学习
1
无人机遥感在农林信息提取中的实现方法与 GIS 融合制图
2
陆面生态水文模拟与多源遥感数据同化的实践技术应用
3
基于Python语言快速批量运行DSSAT模型及交叉融合、扩展应用技术应用课程
4
双碳目标下生态与农田系统温室气体排放模拟实践技术应用
5
双碳目标下 DNDC 模型建模方法及在土壤碳储量、 温室气体排放、农田减排、土地变化、气候变化中 的实践技术应用课程
6
双碳目标下基于“遥感+”融合技术在碳储量、碳收支、碳循环等多领域监测与模拟实践应用高阶课程
7
生态系统NPP及碳源、碳汇模拟实践技术应用高级视频课
8
基于R语言APSIM模型进阶应用与参数优化、批量模拟实践技术高级培训班
9
WOFOST 模型与 PCSE 模型实践技术应用培训班
10
R-Meta分析与【文献计量分析、贝叶斯、机器学习等】多技术融合实践与拓展进阶高级培训班
11
R语言混合效应(多水平/层次/嵌套)模型及贝叶斯实现技术应用精品课程
12
最新基于R语言结构方程模型分析与实践技术应用精品课程
13
R语言与作物模型(以DSSAT模型为例)融合应用高级实战技术课程
14
最新DSSAT作物模型建模方法及实践技术应用精品课程


END




声明: 本号旨在传播、传递、交流,对相关文章内容观点保持中立态度。涉及内容如有侵权或其他问题,请与本号联系,第一时间做出撤回。


END

Ai尚研修丨专注科研领域

技术推广,人才招聘推荐,科研活动服务

科研技术云导师,Easy  Scientific  Research

群落生态学
介绍生态学经典、前沿文献,传播生态学知识。
 最新文章