AAAI 2025将在2025年2月25日到3月4日于美国费城( Philadelphia, Pennsylvania, USA)举行。AAAI 2025共有12,957篇投稿(Main Technical Track),共录取了3032篇论文,录取率23.4%。
本文总结了2025 AAAI上有关时间序列(time series)相关论文,共计55篇。如有疏漏,欢迎大家补充。
时间序列Topic:预测,分类,异常检测,表示学习,因果发现,非平稳时序,LLM应用,Mamba等。其中10,19,49,51为Oral。
点击文末阅读原文跳转笔者知乎链接(跳转论文链接更方便)。
Language Pre-training Guided Masking Representation Learning for Time Series Classification Frequency-Masked Embedding Inference: A Non-Contrastive Approach for Time Series Representation Learning Hierarchical Classification Auxiliary Network for Time Series Forecasting TimeCMA: Towards LLM-Empowered Multivariate Time Series Forecasting via Cross-Modality Alignment Neural Conformal Control for Time Series Forecasting Probabilistic Forecasting of Irregularly Sampled Time Series with Missing Values via Conditional Normalizing Flows Adaptive Multi-Scale Decomposition Framework for Time Series Forecasting Times2D: Multi-Period Decomposition and Derivative Mapping for General Time Series Forecasting VarDrop: Enhancing Training Efficiency by Reducing Variate Redundancy in Periodic Time Series Forecasting [Oral] Unlocking the Power of Patch: Patch-Based MLP for Long-Term Time Series Forecasting Amplifier: Bringing Attention to Neglected Low-Energy Components in Time Series Forecasting Unlocking the Power of LSTM for Long Term Time Series Forecasting Apollo-Forecast: Overcoming Aliasing and Inference Speed Challenges in Language Models for Time Series Forecasting Battling the Non-stationarity in Time Series Forecasting via Test-time Adaptation Auto-Regressive Moving Diffusion Models for Time Series Forecasting xPatch: Dual-Stream Time Series Forecasting with Exponential Seasonal-Trend Decomposition Affirm: Interactive Mamba with Adaptive Fourier Filters for Long-term Time Series Forecasting A Lightweight Sparse Interaction Network for Time Series Forecasting [Oral] HDT: Hierarchical Discrete Transformer for Multivariate Time Series Forecasting HyperMixer: Specializable Hypergraph Channel Mixing for Long-term Multivariate Time Series Forecasting FilterTS: Comprehensive Frequency Filtering for Multivariate Time Series Forecasting WaveletMixer: A Multi-resolution Wavelets Based MLP-Mixer For Multivariate Long-term Time Series Forecasting TimePFN: Effective Multivariate Time Series Forecasting with Synthetic Data WPMixer: Efficient Multi-Resolution Mixing for Long-Term Time Series Forecasting Revisiting Attention for Multivariate Time Series Forecasting Sequence Complementor: Complementing Transformers For Time Series Forecasting with Learnable Sequences CALF: Aligning LLMs for Time Series Forecasting via Cross-modal Fine-Tuning CSformer: Combining Channel Independence and Mixing for Robust Multivariate Time Series Forecasting Disentangling Long-Short Term State Under Unknown Interventions for Online Time Series Forecasting Cherry-Picking in Time Series Forecasting: How to Select Datasets to Make Your Model Shine GCAD: Anomaly Detection in Multivariate Time Series from the Perspective of Granger Causality TAIL-MIL: Time-Aware and Instance-Learnable Multiple Instance Learning for Multivariate Time Series Anomaly Detection Graph Mixture of Experts and Memory-augmented Routers for Multivariate Time Series Anomaly Detection Content-aware Balanced Spectrum Encoding in Masked Modeling for Time Series Classification MPTSNet: Integrating Multiscale Periodic Local Patterns and Global Dependencies for Multivariate Time Series Classification SPACETIME: Causal Discovery from Non-Stationary Time Series STEM-LTS: Integrating Semantic-Temporal Dynamics in LLM-driven Time Series Analysis TimeCHEAT: A Channel Harmony Strategy for Irregularly Sampled Multivariate Time Series Analysis DualDynamics: Synergizing Implicit and Explicit Methods for Robust Irregular Time Series Analysis InteDisUX: Interpretation-Guided Discriminative User-Centric Explanation For Time Series Enhancing Masked Time-Series Modeling via Dropping Patches Self-attention-based Diffusion Model for Time-series Imputation in Partial Blackout Scenarios Real-time Calibration Model for Low-cost Sensor in Fine-grained Time series Learning to Generate Multi-Domain Time Series with Domain Prompts KernelMatmul: Scaling Gaussian Processes to Large Time Series TimeCAP: Learning to Contextualize, Augment, and Predict Time Series Events with Large Language Model Agents Motif-aware Graph Neural Networks for Networked Time Series Imputation Modeling Latent Non-Linear Dynamical System over Time Series [Oral] Time Series Supplier Allocation via Deep Black-Litterman Model Federated Foundation Models on Heterogeneous Time Series [Oral] ChatTime: A Unified Multimodal Time Series Foundation Model Bridging Numerical and Textual Data Integrating Sequence and Image Modeling in Irregular Medical Time Series through Self-Supervised Learning Mixture of Online and Offline Experts for Non-stationary Time Series Population Aware Diffusion for Time Series Generation Enhancing Multivariate Time-Series Domain Adaptation via Contrastive Frequency Graph Discovery and Language-Guided Adversary Alignment
1 Language Pre-training Guided Masking Representation Learning for Time Series Classification
作者:Liaoyuan Tang,Zheng Wang,Jie Wang,guanxiong he,Zhezheng Hao,Rong Wang,Feiping Nie
关键词:分类,语言模型
2 Frequency-Masked Embedding Inference: A Non-Contrastive Approach for Time Series Representation Learning
链接:https://arxiv.org/abs/2412.20790
作者:En Fu,Yanyan Hu
关键词:频率掩码,表示学习
3 Hierarchical Classification Auxiliary Network for Time Series Forecasting
链接:https://arxiv.org/abs/2405.18975
作者:Yanru Sun,Zongxia Xie,Dongyue Chen,Emadeldeen Eldele,Qinghua Hu
关键词:分类,辅助网络
4 TimeCMA: Towards LLM-Empowered Multivariate Time Series Forecasting via Cross-Modality Alignment
链接:https://arxiv.org/abs/2406.01638
作者:Chenxi Liu,Qianxiong Xu,Hao Miao,Sun Yang,Lingzheng Zhang,Cheng Long,Ziyue Li,Rui Zhao
关键词:大模型,预测,对齐
5 Neural Conformal Control for Time Series Forecasting
链接:https://arxiv.org/abs/2412.18144
作者:Ruipu Li,Alexander RodrÃguez
关键词:预测,共形
6 Probabilistic Forecasting of Irregularly Sampled Time Series with Missing Values via Conditional Normalizing Flows
链接:https://arxiv.org/abs/2402.06293
作者:Vijaya Krishna Yalavarthi,Randolf Scholz,Stefan Born,Lars Schmidt-Thieme
关键词:概率预测,缺失值
7 Adaptive Multi-Scale Decomposition Framework for Time Series Forecasting
链接:https://arxiv.org/abs/2406.03751
作者:Yifan Hu,Peiyuan Liu,Peng Zhu,Dawei Cheng,Tao Dai
关键词:预测,自适应多尺度分解
8 Times2D: Multi-Period Decomposition and Derivative Mapping for General Time Series Forecasting
作者:Reza nematirad,Anil Pahwa,Bala Natarajan
关键词:预测
9 VarDrop: Enhancing Training Efficiency by Reducing Variate Redundancy in Periodic Time Series Forecasting
作者:Junhyeok Kang,Yooju Shin,Jae-Gil Lee
关键词:高效训练,剔除冗余
10 [Oral]Unlocking the Power of Patch: Patch-Based MLP for Long-Term Time Series Forecasting
链接:https://arxiv.org/abs/2405.13575
作者:Peiwang Tang,Weitai Zhang
关键词:预测,Patch
11 Amplifier: Bringing Attention to Neglected Low-Energy Components in Time Series Forecasting
作者:Jingru Fei,Kun Yi,Wei Fan,Qi Zhang,Zhendong Niu
关键词:预测
12 Unlocking the Power of LSTM for Long Term Time Series Forecasting
链接:https://arxiv.org/abs/2408.10006
作者:Yaxuan Kong,Zepu Wang,Yuqi Nie,Tian Zhou,Stefan Zohren,Yuxuan Liang,Peng Sun,Qingsong Wen
关键词:预测,xLSTM
13 Apollo-Forecast: Overcoming Aliasing and Inference Speed Challenges in Language Models for Time Series Forecasting
链接:https://arxiv.org/abs/2412.12226
作者:Tianyi YIN,Jingwei Wang,Yunlong Ma,Han Wang,Chenze Wang,Yukai Zhao,Min Liu,Weiming Shen
关键词:预测,量化
14 Battling the Non-stationarity in Time Series Forecasting via Test-time Adaptation
链接:https://arxiv.org/abs/2501.04970
作者:HyunGi Kim,Siwon Kim,Jisoo Mok,Sungroh Yoon
关键词:非平稳时序,测试时适应
15 Auto-Regressive Moving Diffusion Models for Time Series Forecasting
链接:https://arxiv.org/abs/2412.09328
作者:Jiaxin Gao,Qinglong Cao,Yuntian Chen
关键词:预测,自回归扩散
16 xPatch: Dual-Stream Time Series Forecasting with Exponential Seasonal-Trend Decomposition
链接:https://arxiv.org/abs/2412.17323
作者:Artyom Stitsyuk,Jaesik Choi
关键词:预测,指数季节趋势分解,双流结构
17 Affirm: Interactive Mamba with Adaptive Fourier Filters for Long-term Time Series Forecasting
作者:Yuhan Wu,Xiyu Meng,Huajin Hu,Junru Zhang,Yabo Dong,Dongming Lu
关键词:预测,Mamba,傅里叶过滤
18 A Lightweight Sparse Interaction Network for Time Series Forecasting
作者:Xu Zhang,Qitong Wang,Peng Wang,Wei Wang
关键词:预测,轻量化
19 [Oral]HDT: Hierarchical Discrete Transformer for Multivariate Time Series Forecasting
作者:FENG SHIBO,Peilin Zhao,Liu Liu,Pengcheng Wu,Zhiqi Shen
关键词:预测
20 HyperMixer: Specializable Hypergraph Channel Mixing for Long-term Multivariate Time Series Forecasting
作者:Changyuan Tian,Zhicong Lu,Zequn Zhang,Heming Yang,Wei Cao,Zhi Guo,Xian Sun,Li Jin
关键词:长时预测,超图
21 FilterTS: Comprehensive Frequency Filtering for Multivariate Time Series Forecasting
作者:Yulong Wang,Yushuo Liu,Xiaoyi Duan,Kai Wang
关键词:预测,频域过滤
22 WaveletMixer: A Multi-resolution Wavelets Based MLP-Mixer For Multivariate Long-term Time Series Forecasting
作者:Zichi Zhang,Tuan Dung Pham,Yimeng An,Ngoc Phu Doan,Majed Alsharari,Viet-Hung Tran,Tuan Hoang,Hans Vandierendonck,Son T. Mai
关键词:长时预测,小波,多分辨率
23 TimePFN: Effective Multivariate Time Series Forecasting with Synthetic Data
作者:Ege Onur Taga,Muhammed Emrullah Ildiz,Samet Oymak
关键词:预测,合成数据
24 WPMixer: Efficient Multi-Resolution Mixing for Long-Term Time Series Forecasting
链接:https://arxiv.org/abs/2412.17176
作者:Md Mahmuddun Nabi Murad,Mehmet Aktukmak,Yasin Yilmaz
关键词:长时预测,小波,多分辨率
25 Revisiting Attention for Multivariate Time Series Forecasting
链接:https://arxiv.org/abs/2407.13806
作者:Haixiang Wu
关键词:预测,注意力机制
26 Sequence Complementor: Complementing Transformers For Time Series Forecasting with Learnable Sequences
链接:https://arxiv.org/abs/2501.02735
作者:Xiwen Chen,Peijie Qiu,Wenhui Zhu,Huayu Li,Hao Wang,Aristeidis Sotiras,Yalin Wang,Abolfazl Razi
关键词:预测,注意力机制
27 CALF: Aligning LLMs for Time Series Forecasting via Cross-modal Fine-Tuning
链接:https://arxiv.org/abs/2403.07300
作者:Peiyuan Liu,Hang Guo,Tao Dai,Naiqi Li,Jigang Bao,Xudong Ren,Yong Jiang,Shu-Tao Xia
关键词:预测,对齐,跨模态微调
28 CSformer: Combining Channel Independence and Mixing for Robust Multivariate Time Series Forecasting
链接:https://arxiv.org/abs/2312.06220
作者:Haoxin Wang,Yipeng Mo,Kunlan Xiang,Nan Yin,Honghe Dai,Bixiong Li,Songhai Fan,Site Mo
关键词:预测,通道独立(混合)
29 Disentangling Long-Short Term State Under Unknown Interventions for Online Time Series Forecasting
作者:Ruichu Cai,Haiqin Huang,Zhifan Jiang,Zijian Li,changze zhou,Yuequn Liu,Yuming Liu,Zhifeng Hao
关键词:在线预测
30 Cherry-Picking in Time Series Forecasting: How to Select Datasets to Make Your Model Shine
链接:https://arxiv.org/abs/2412.14435
作者:Luis Roque,Vitor Cerqueira,Carlos Soares,LuÃs Torgo
关键词:评测
31 GCAD: Anomaly Detection in Multivariate Time Series from the Perspective of Granger Causality
作者:Zehao Liu,Mengzhou Gao,Pengfei Jiao
关键词:异常检测
32 TAIL-MIL: Time-Aware and Instance-Learnable Multiple Instance Learning for Multivariate Time Series Anomaly Detection
作者:Jaeseok Jang,HYUK-YOON KWON
关键词:异常检测
33 Graph Mixture of Experts and Memory-augmented Routers for Multivariate Time Series Anomaly Detection
链接:https://arxiv.org/abs/2412.19108
作者:Xiaoyu Huang,Weidong Chen,Bo Hu,Zhendong Mao
关键词:异常检测,混合专家系统
34 Content-aware Balanced Spectrum Encoding in Masked Modeling for Time Series Classification
链接:https://arxiv.org/abs/2412.13232
作者:Yudong Han,Haocong Wang,Yupeng Hu,Yongshun Gong,Xuemeng Song,Weili Guan
关键词:分类,内容感知
35 MPTSNet: Integrating Multiscale Periodic Local Patterns and Global Dependencies for Multivariate Time Series Classification
作者:Yang Mu,Muhammad Shahzad,Xiao Xiang Zhu
关键词:分类,局部-全局
36 SPACETIME: Causal Discovery from Non-Stationary Time Series
链接:https://arxiv.org/abs/2501.10235
作者:Sarah Mameche, Lénaïg Cornanguer, Urmi Ninad, Jilles Vreeken
关键词:因果发现,非平稳
37 STEM-LTS: Integrating Semantic-Temporal Dynamics in LLM-driven Time Series Analysis
作者:Zhe Zhao,Pengkun Wang,HaiBin Wen,ShuangWang,Liheng Yu,Yang Wang
关键词:时序分析,LLM
38 TimeCHEAT: A Channel Harmony Strategy for Irregularly Sampled Multivariate Time Series Analysis
链接:https://arxiv.org/abs/2412.12886
作者:Jiexi Liu,Meng Cao,Songcan Chen
关键词:不规则时序,通道依赖独立
39 DualDynamics: Synergizing Implicit and Explicit Methods for Robust Irregular Time Series Analysis
链接:https://arxiv.org/abs/2401.04979
作者:YongKyung Oh,Dongyoung Lim,Sungil Kim
关键词:不规则时序,神经微分方程
40 InteDisUX: Intepretation-Guided Discriminative User-Centric Explanation For Time Series
作者:Viet-Hung Tran,Zichi Zhang,Tuan Dung Pham,Ngoc Phu Doan,Anh-Tuan Hoang,Peixin Li,Hans Vandierendonck,Ira Assent,Son T. Mai
关键词:分类,可解释性
41 Enhancing Masked Time-Series Modeling via Dropping Patches
链接:https://arxiv.org/abs/2412.15315
作者:Tianyu Qiu,Yi Xie,Yun Xiong,Hao Niu,Xiaofeng Gao
关键词:预测,patch丢弃
42 Self-attention-based Diffusion Model for Time-series Imputation in Partial Blackout Scenarios
作者:Mohammad Rafid Ul Islam,Prasad Tadepalli,Alan Fern
关键词:插补,停电场景
43 Real-time Calibration Model for Low-cost Sensor in Fine-grained Time series
链接:https://arxiv.org/abs/2412.20170
作者:Seokho Ahn,Hyungjin Kim,Sungbok Shin,Young-Duk Seo
关键词:传感器时序数据
44 Learning to Generate Multi-Domain Time Series with Domain Prompts
链接:https://arxiv.org/abs/2501.05403
作者:Yu-Hao Huang,Chang Xu,Yueying Wu,Wu-Jun Li,Jiang Bian
关键词:生成,领域提示
45 KernelMatmul: Scaling Gaussian Processes to Large Time Series
作者:Tilman Hoffbauer,Holger Hoos,Jakob Bossek
关键词:高斯过程
46 TimeCAP: Learning to Contextualize, Augment, and Predict Time Series Events with Large Language Model Agents
作者:Geon Lee,Wenchao Yu,Kijung Shin,Wei Cheng,Haifeng Chen
关键词:智能体,时间序列事件
47 Motif-aware Graph Neural Networks for Networked Time Series Imputation
作者:Nourhan Ahmed,Vijaya Krishna Yalavarthi,Lars Schmidt-Thieme
关键词:插补,GNN
48 Modeling Latent Non-Linear Dynamical System over Time Series
链接:https://arxiv.org/abs/2412.08114
作者:Ren Fujiwara,Yasuko Matsubara,Yasushi Sakurai
关键词:非线性系统
49 [Oral] Time Series Supplier Allocation via Deep Black-Litterman Model
链接:https://arxiv.org/abs/2401.17350
作者:Xinke Jiang,WentaoZhang,Yuchen Fang,Xiaowei Gao,Hao Chen,Haoyu Zhang,Dingyi Zhuang,Jiayuan Luo
关键词:时间序列供应商分配
50 Federated Foundation Models on Heterogeneous Time Series
链接:https://arxiv.org/abs/2412.08906
作者:Shengchao Chen,Guodong Long,Jing Jiang,Chengqi Zhang
关键词:基础模型,联邦学习
51 [Oral]ChatTime: A Unified Multimodal Time Series Foundation Model Bridging Numerical and Textual Data
链接:https://arxiv.org/abs/2412.11376
作者:Chengsen Wang,Qi Qi,Jingyu Wang,Haifeng Sun,Zirui Zhuang,Jinming Wu,Lei Zhang,Jianxin Liao
关键词:多模态问答,时间序列基础模型
AAAI 2025 | ChatTime:首个理解与生成统一的时序文本多模态基础模型
52 Integrating Sequence and Image Modeling in Irregular Medical Time Series through Self-Supervised Learning
作者:Liuqing Chen,Shuhong Xiao,Shixian Ding,Shanhai Hu,Lingyun Sun
关键词:多模态,医疗时序
53 Mixture of Online and Offline Experts for Non-stationary Time Series
链接:https://arxiv.org/abs/2202.05996
作者:Zhilin Zhao,Longbing Cao,Yuanyu Wan
关键词:非平稳时序,在线离线场景
54 Population Aware Diffusion for Time Series Generation
链接:https://arxiv.org/abs/2501.00910
作者:Yang Li,Han Meng,Zhenyu Bi,Ingolv T. Urnes,Haipeng Chen
关键词:生成,扩散
55 Enhancing Multivariate Time-Series Domain Adaptation via Contrastive Frequency Graph Discovery and Language-Guided Adversary Alignment
作者:Guo Haoren,Zhu Haiyue,Jiahui Wang,Prahlad Vadakkepat,Weng Khuen Ho,Tong Heng LEE
关键词:时间序列域自适应
相关链接
AAAI 2025 Main Technical Track:https://aaai.org/conference/aaai/aaai-25/main-technical-track/
欢迎各位作者投稿近期有关时空数据和时间序列录用的顶级会议和期刊的优秀文章解读,我们将竭诚为您宣传,共同学习进步。如有意愿,请通过后台私信与我们联系。
推荐阅读
AAAI 2024 | 时间序列(Time Series)和时空数据(Spatial-Temporal)论文总结
AAAI 2025 | 时空数据(Spatial-Temporal)论文总结
如果觉得有帮助还请分享,在看,点赞