ICLR 2025 | 时空数据(Spatial-Temporal)高分论文总结

文摘   2024-12-16 07:56   北京  

ICLR2025已经结束了讨论阶段,进入了meta-review阶段,分数应该不会有太大的变化了,本文总结了其中时空数据(Spatial-Temporal)高分的论文。如有疏漏,欢迎大家补充。

挑选原则:均分要大于等于6(≥6,即使有3,但是有8或者更高的分拉回来也算)

时空数据Topic:时空预测,轨迹生成,LLM以及基础模型等内容。总计10

点击文末阅读原文跳转笔者知乎链接(跳转论文链接更方便)。


  1. WardropNet: Traffic Flow Predictions via Equilibrium-Augmented Learning
  2. CityBench: Evaluating the Capabilities of Large Language Models for Urban Tasks
  3. Expand and Compress: Exploring Tuning Principles for Continual Spatio-Temporal Graph Forecasting
  4. Learning Spatiotemporal Dynamical Systems from Point Process Observations
  5. High-Dynamic Radar Sequence Prediction for Weather Nowcasting Using Spatiotemporal Coherent Gaussian Representation
  6. PIMRL: Physics-Informed Multi-Scale Recurrent Learning for Spatiotemporal Prediction
  7. STOP! A Out-of-Distribution Processor with Robust Spatiotemporal Interaction
  8. Deep Random Features for Scalable Interpolation of Spatiotemporal Data
  9. Does Vector Quantization Fail in Spatio-Temporal Forecasting? Exploring a Differentiable Sparse Soft-Vector Quantization Approach
  10. DiffMove: Human Trajectory Recovery via Conditional Diffusion Model

1 WardropNet: Traffic Flow Predictions via Equilibrium-Augmented Learning

链接https://openreview.net/forum?id=7FHSPd3SRE

分数8655

关键词:交通平衡

keywords: structured learning, combinatorial optimization augmented machine learning, traffic equilibrium prediction

2 CityBench: Evaluating the Capabilities of Large Language Models for Urban Tasks

链接https://openreview.net/forum?id=oIWN7eMhTb

分数866510

关键词:大模型评估,城市模拟

keywords:LLM,benchmark

TL; DR:We propose a simulator based global scale benchmark to evaluate the performance of large language models on various urban tasks.


3 Expand and Compress: Exploring Tuning Principles for Continual Spatio-Temporal Graph Forecasting

链接https://openreview.net/forum?id=FRzCIlkM7I

分数38888

关键词:持续学习,时空预测

keywords:Spatio-temporal Graph, Continual Forecasting, Tuning Principle

TL; DR:We introduce EAC, which follows the two fundamental tuning principle and learns prompt parameters  pool only through expand and compress, simply, effectively and efficiently solving the continual spatio-temporal graph forecasting problem.


EAC

4 Learning Spatiotemporal Dynamical Systems from Point Process Observations

链接https://openreview.net/forum?id=37EXtKCOkn

分数8688

关键词:点过程,时空动力学模型

keywords: dynamics, spatiotemporal, neural, PDE, ODE

5 High-Dynamic Radar Sequence Prediction for Weather Nowcasting Using Spatiotemporal Coherent Gaussian Representation

链接https://openreview.net/forum?id=Cjz9Xhm7sI

分数888

关键词:气象预测,Mamba

keywords: 3D Gaussian, Dynamic Reconstruction, Radar Prediction, Weather Nowcasting



6 PIMRL: Physics-Informed Multi-Scale Recurrent Learning for Spatiotemporal Prediction

链接https://openreview.net/forum?id=w3rbBVJ9Jg

分数8566

关键词:微分方程,时空预测

keywords:PDEs, physics encoding, data-driven modeling

TL; DR:We introduce a new multi-scale framework calling physics-informed multi-scale recurrent learning (PIMRL) framework to effectively utilize multi-scale time data.

7 STOP! A Out-of-Distribution Processor with Robust Spatiotemporal Interaction

链接https://openreview.net/forum?id=85WHuB5CUK

分数6666

关键词:分布外泛化,时空预测

keywords:Spatiotemporal learning; out-of-distribution learning; spatiotemporal prediction

8 Deep Random Features for Scalable Interpolation of Spatiotemporal Data

链接https://openreview.net/forum?id=OD1MV7vf41

分数388

关键词:地球科学,高斯过程

keywords:Random Features, Deep Gaussian Processes, Bayesian Deep Learning, Remote Sensing

TL; DR:We propose a scalable Bayesian deep learning framework to interpolate remote sensing data for increased accuracy and flexibility.


9 Does Vector Quantization Fail in Spatio-Temporal Forecasting? Exploring a Differentiable Sparse Soft-Vector Quantization Approach

链接https://openreview.net/forum?id=4CFVPCYfJ9

分数5856

关键词:向量量化,稀疏回归

keywords:spatio-temporal forecasting, vector quantilization, sparse regression, differentiable, soft

TL; DR:Does Vector Quantization Fail in Spatio-Temporal Forecasting? Exploring a Differentiable Sparse Soft-Vector Quantization Approach

10 DiffMove: Human Trajectory Recovery via Conditional Diffusion Model

链接https://openreview.net/forum?id=VRFotuGLfM

分数66865

关键词:轨迹恢复,扩散模型

keywords: Trajectory recovery, Diffusion model, Self-supervised learning, Human mobility

TL; DR:This paper presents DiffMove, a novel conditional diffusion based method for recovering human trajectories from incomplete data, outperforming existing approaches by an average of 11% in recall.

DiffMove

相关链接

ICLR 2025 OpenReviewhttps://openreview.net/group?id=ICLR.cc/2025/Conference#tab-active-submissions

ICLR 2025分数统计https://papercopilot.com/statistics/iclr-statistics/iclr-2025-statistics/


欢迎各位作者投稿近期有关时空数据时间序列录用的顶级会议期刊的优秀文章解读,我们将竭诚为您宣传,共同学习进步。如有意愿,请通过后台私信与我们联系。

推荐阅读

NeurIPS 2024 | 时间序列(Time Series)论文总结

NeurIPS 2024 | 时空数据(Spatial-Temporal)论文总结

ICML 2024 时间序列(Time Series)和时空数据(Spatial-Temporal)论文总结【抢先版】

ICLR 2024 | 时空数据(Spatial-Temporal)论文汇总

ICLR 2024 | 时间序列(Time Series)论文

点击文末阅读原文跳转笔者知乎链接(跳转论文链接更方便)。

如果觉得有帮助还请分享,在看,点赞

时空探索之旅
分享时空数据和时间序列前沿文献。偶尔聊聊影视剧。
 最新文章