VLDB 2024于2024年8月26号-8月30号在中国广州举行。
本文总结了VLDB 2024有关时空数据(Spatial-temporal data)的相关论文,共11篇。主要包含如有疏漏,欢迎大家补充。
时空数据Topic:交通预测,插补,轨迹相似度检索,轨迹恢复,轨迹插补,路径规划,最短路查询等。
点击文末阅读原文跳转笔者知乎链接(跳转论文链接更方便)。
BigST: Linear Complexity Spatio-Temporal Graph Neural Network for Traffic Forecasting on Large-Scale Road Networks Sparcle: Boosting the Accuracy of Data Cleaning Systems through Spatial Awareness High-Performance Spatial Data Analytics: Systematic R&D for Scale-Out and Scale-Up Solutions from the Past to Now 3 TERI: An Effective Framework for Trajectory Recovery with Irregular Time Intervals KAMEL: A Scalable BERT-based System for Trajectory Imputation Trajectory Similarity Measurement: An Efficiency Perspective Nuhuo: An Effective Estimation Model for Traffic Speed Histogram Imputation on A Road Network Real-time Insertion Operator for Shared Mobility on Time-Dependent Road Networks Efficient Stochastic Routing in Path-Centric Uncertain Road Networks PCSP: Efficiently Answering Label-Constrained Shortest Path Queries in Road Networks [Demo] Pyneapple-G: Scalable Spatial Grouping Queries
BigST: Linear Complexity Spatio-Temporal Graph Neural Network for Traffic Forecasting on Large-Scale Road Networks
链接:https://www.vldb.org/pvldb/vol17/p1081-han.pdf
代码:https://github.com/usail-hkust/BigST
作者:Jindong Han, Weijia Zhang, Hao Liu, Tao Tao, Naiqiang Tan, Hui Xiong
关键词:可扩展的交通预测
Sparcle: Boosting the Accuracy of Data Cleaning Systems through Spatial Awareness
链接:https://www.vldb.org/pvldb/vol17/p2349-mokbel.pdf
代码:https://github.com/yhuang-db/holoclean-sparcle
作者:Yuchuan Huang, Mohamed Mokbel
关键词:数据清理系统, 空间感知
High-Performance Spatial Data Analytics: Systematic R&D for Scale-Out and Scale-Up Solutions from the Past to Now
链接:https://www.vldb.org/pvldb/vol17/p4507-wang.pdf
代码:https://github.com/harsha2010/magellan
作者:Fusheng Wang, Rubao Lee, Dejun Teng, Xiaodong Zhang, Joel Saltz
关键词:Hadoop-GIS, spatial data analysis, hardware acceleration
TERI: An Effective Framework for Trajectory Recovery with Irregular Time Intervals
链接:https://www.vldb.org/pvldb/vol17/p414-chen.pdf
代码:https://github.com/yileccc/TERI
作者:Yile Chen, Gao Cong, Cuauhtemoc Anda
关键词:轨迹恢复,不规则采样
KAMEL: A Scalable BERT-based System for Trajectory Imputation
链接:https://www.vldb.org/pvldb/vol17/p525-musleh.pdf
代码:https://github.com/meshalawy/KAMEL
作者:Mashaal Musleh, Mohamed F. Mokbel
关键词:轨迹插补, BERT,可扩展性
Trajectory Similarity Measurement: An Efficiency Perspective
链接:https://www.vldb.org/pvldb/vol17/p2293-qi.pdf
代码:https://github.com/changyanchuan/TrajSimiMeasures
作者:Yanchuan Chang, Egemen Tanin, Gao Cong, Christian S. Jensen, Jianzhong Qi
关键词:轨迹相似度计算,效率评估
Nuhuo: An Effective Estimation Model for Traffic Speed Histogram Imputation on A Road Network
链接:https://www.vldb.org/pvldb/vol17/p1605-yuan.pdf
代码:https://github.com/yuanhaitao/Nuhuo.git
作者:Haitao Yuan, Gao Cong, Guoliang Li
关键词:交通速度直方图, 插补
Real-time Insertion Operator for Shared Mobility on Time-Dependent Road Networks
链接:https://www.vldb.org/pvldb/vol17/p1669-zeng.pdf
代码:https://github.com/gzyhkust/Insertion-Operator
作者:Zengyang Gong, Yuxiang Zeng, Lei Chen
关键词:real-time insertion operator, 共享出行, 时间依赖的路网
Efficient Stochastic Routing in Path-Centric Uncertain Road Networks
链接:https://www.vldb.org/pvldb/vol17/p2893-xu.pdf
代码:https://github.com/decisionintelligence/Route-sota
作者:Chenjuan Guo, Ronghui Xu, Bin Yang, Yuan Ye, Tung Kieu, Yan Zhao, Christian S. Jensen
关键词:路径规划,随即路由, 启发式
PCSP: Efficiently Answering Label-Constrained Shortest Path Queries in Road Networks
链接:https://www.vldb.org/pvldb/vol17/p3082-wang.pdf
代码:https://github.com/lbwang95/PCSP
作者:SLibin Wang, Raymond Chi-Wing Wong
关键词:Shortest Path Queries
[Demo] Pyneapple-G: Scalable Spatial Grouping Queries
链接:https://www.vldb.org/pvldb/vol17/p4469-abdelhafeez.pdf
作者:Laila Abdelhafeez, Andres Calderon, Amr Magdy, Vassilis J. Tsotras
关键词:空间分组查询
相关链接
VLDB 2024 Accepted Paper:https://vldb.org/pvldb/volumes/17/
欢迎各位作者投稿近期有关时空数据和时间序列录用的顶级会议和期刊的优秀文章解读,我们将竭诚为您宣传,共同学习进步。如有意愿,请通过后台私信与我们联系。
推荐阅读
SIGMOD 2024 | 时空数据(Spatial-Temporal)和时间序列论文总结
ICDE 2024 | 时空(Spatial-Temporal)数据论文总结
ICDE 2024 | 时间序列(Time Series)论文总结
如果觉得有帮助还请分享,在看,点赞