NeurIPS 2024于2024年12月10号-12月15号在加拿大温哥华举行(Vancouver, Canada),录取率25.8%
本文总结了NeurIPS 2024有关时间序列(time series data)的相关论文,主要包含如有疏漏,欢迎大家补充。
时间序列Topic:预测,插补,分类,生成,因果分析,异常检测,LLM以及基础模型等内容。总计61篇,其中正会55篇,D&B Track6篇
预测:1-29
异常检测:30,57
分类:32,54,55
表示学习:37,39,40
生成:31,41,42,60
时序分析:33,34,36
大语言模型:7,10,24,52
基础模型:16,29,35,53
扩散模型:1,31,42,43
Retrieval-Augumented Diffusion Models for Time Series Forecasting Attractor Memory for Long-Term Time Series Forecasting: A Chaos Perspective Ada-MSHyper: Adaptive Multi-Scale Hypergraph Transformer for Time Series Forecasting FilterNet: Harnessing Frequency Filters for Time Series Forecasting Frequency Adaptive Normalization For Non-stationary Time Series Forecasting Rethinking the Power of Timestamps for Robust Time Series Forecasting: A Global-Local Fusion Perspective AutoTimes: Autoregressive Time Series Forecasters via Large Language Models DDN: Dual-domain Dynamic Normalization for Non-stationary Time Series Forecasting BackTime: Backdoor Attacks on Multivariate Time Series Forecasting Are Language Models Actually Useful for Time Series Forecasting? Rethinking Fourier Transform for Long-term Time Series Forecasting: A Basis Functions Perspective Introducing Spectral Attention for Long-Range Dependency in Time Series Forecasting Parsimony or Capability? Decomposition Delivers Both in Long-term Time Series Forecasting Structured Matrix Basis for Multivariate Time Series Forecasting with Interpretable Dynamics DeformableTST: Transformer for Time Series Forecasting without Over-reliance on Patching Time-FFM: Towards LM-Empowered Federated Foundation Model for Time Series Forecasting PGN: The RNN's New Successor is Effective for Long-Range Time Series Forecasting SOFTS: Efficient Multivariate Time Series Forecasting with Series-Core Fusion Multivariate Probabilistic Time Series Forecasting with Correlated Errors CycleNet: Enhancing Time Series Forecasting through Modeling Periodic Patterns Analysing Multi-Task Regression via Random Matrix Theory with Application to Time Series Forecasting CondTSF: One-line Plugin of Dataset Condensation for Time Series Forecasting Scaling Law for Time Series Forecasting From News to Forecast: Integrating Event Analysis in LLM-Based Time Series Forecasting with Reflection From Similarity to Superiority: Channel Clustering for Time Series Forecasting TimeXer: Empowering Transformers for Time Series Forecasting with Exogenous Variables ElasTST: Towards Robust Varied-Horizon Forecasting with Elastic Time-Series Transformer Are Self-Attentions Effective for Time Series Forecasting? Tiny Time Mixers (TTMs): Fast Pre-trained Models for Enhanced Zero/Few-Shot Forecasting of Multivariate Time Series SARAD: Spatial Association-Aware Anomaly Detection and Diagnosis for Multivariate Time Series Utilizing Image Transforms and Diffusion Models for Generative Modeling of Short and Long Time Series Con4m: Context-aware Consistency Learning Framework for Segmented Time Series Classification Peri-midFormer: Periodic Pyramid Transformer for Time Series Analysis Shape analysis for time series UNITS: A Unified Multi-Task Time Series Model Large Pre-trained time series models for cross-domain Time series analysis tasks "Segment, Shuffle, and Stitch: A Simple Mechanism for Improving Time-Series Representations" Task-oriented Time Series Imputation Evaluation via Generalized Representers Exploiting Representation Curvature for Boundary Detection in Time Series Learning diverse causally emergent representations from time series data SDformer: Similarity-driven Discrete Transformer For Time Series Generation FIDE: Frequency-Inflated Conditional Diffusion Model for Extreme-Aware Time Series Generation ANT: Adaptive Noise Schedule for Time Series Diffusion Models Trajectory Flow Matching with Applications to Clinical Time Series Modelling Chimera: Effectively Modeling Multivariate Time Series with 2-Dimensional State Space Models Reinforced Cross-Domain Knowledge Distillation on Time Series Data Boosting Transferability and Discriminability for Time Series Domain Adaptation Towards Editing Time Series Conformalized Time Series with Semantic Features ChronoEpilogi: Scalable Time Series Selection with Multiple Solutions Graph Neural Flows for Unveiling Systemic Interactions Among Irregularly Sampled Time Series Tri-Level Navigator: LLM-Empowered Tri-Level Learning for Time Series OOD Generalization UniMTS: Unified Pre-training for Motion Time Series Medformer: A Multi-Granularity Patching Transformer for Medical Time-Series Classification Abstracted Shapes as Tokens - A Generalizable and Interpretable Model for Time-series Classification D&B Track
IncomeSCM: From tabular data set to time-series simulator and causal estimation benchmark The Elephant in the Room: Towards A Reliable Time-Series Anomaly Detection Benchmark Building Timeseries Dataset: Empowering Large-Scale Building Analytics Time-MMD: A New Multi-Domain Multimodal Dataset for Time Series Analysis TSGM: A Flexible Framework for Generative Modeling of Synthetic Time Series ProbTS: Benchmarking Point and Distributional Forecasting across Diverse Prediction Horizons
1 Retrieval-Augumented Diffusion Models for Time Series Forecasting
链接:https://neurips.cc/virtual/2024/poster/94339
作者:Jingwei Liu, Ling Yang, Hongyan Li, Shenda Hong
关键词:预测,扩散模型,检索增强
2 Attractor Memory for Long-Term Time Series Forecasting: A Chaos Perspective
链接:https://neurips.cc/virtual/2024/poster/94220
arXiv:https://arxiv.org/abs/2402.11463
作者:Jiaxi Hu, Yuehong Hu, Wei Chen, Ming Jin, Shirui Pan, Qingsong Wen, Yuxuan Liang
关键词:长时预测
3 Ada-MSHyper: Adaptive Multi-Scale Hypergraph Transformer for Time Series Forecasting
链接:https://neurips.cc/virtual/2024/poster/95175
作者:Zongjiang Shang, Ling Chen, Binqing Wu, Dongliang Cui
关键词:预测,多尺度,超图,Transformer
4 FilterNet: Harnessing Frequency Filters for Time Series Forecasting
链接:https://neurips.cc/virtual/2024/poster/93257
作者:Kun Yi, Wei Fan, Qi Zhang, Hui He, Jingru Fei, Shufeng Hao, Defu Lian
关键词:预测,频率过滤
5 Frequency Adaptive Normalization For Non-stationary Time Series Forecasting
链接:https://neurips.cc/virtual/2024/poster/95063
arXiv:https://arxiv.org/abs/2409.20371
作者:Weiwei Ye · Songgaojun Deng · Qiaosha Zou · Ning Gui
关键词:预测,非平稳
6 Rethinking the Power of Timestamps for Robust Time Series Forecasting: A Global-Local Fusion Perspective
链接:https://neurips.cc/virtual/2024/poster/96026
arXiv:https://arxiv.org/abs/2409.18696
作者:Chengsen Wang · Qi Qi · Jingyu Wang · Haifeng Sun · Zirui Zhuang · Jinming Wu · Jianxin Liao
关键词:预测,稳健性
7 AutoTimes: Autoregressive Time Series Forecasters via Large Language Models
链接:https://neurips.cc/virtual/2024/poster/95975
arXiv:https://arxiv.org/abs/2402.02370
作者:Yong Liu · Guo Qin · Xiangdong Huang · Jianmin Wang · Mingsheng Long
关键词:预测,LLM,自回归
AI论文速读 | AutoTimes:利用大语言模型的自回归时间序列预测器
8 DDN: Dual-domain Dynamic Normalization for Non-stationary Time Series Forecasting
链接:https://neurips.cc/virtual/2024/poster/95167
作者:Tao Dai · Beiliang Wu · Peiyuan Liu · Naiqi Li · Xue Yuerong · Shu-Tao Xia · Zexuan Zhu
关键词:预测,非平稳,双域
9 BackTime: Backdoor Attacks on Multivariate Time Series Forecasting
链接:https://neurips.cc/virtual/2024/poster/95645
arXiv:https://arxiv.org/abs/2410.02195
作者:Xiao Lin · Zhining Liu · Dongqi Fu · Ruizhong Qiu · Hanghang Tong
关键词:预测,后门攻击
10 [Spotlight] Are Language Models Actually Useful for Time Series Forecasting?
链接:https://neurips.cc/virtual/2024/poster/96085
arXiv:https://arxiv.org/abs/2410.02195
作者:Mingtian Tan · Mike Merrill · Vinayak Gupta · Tim Althoff · Tom Hartvigsen
关键词:预测,LLM
备注:大胆之作,去掉LLM效果更好了。
圆圆的算法笔记:预训练大语言模型对时间序列预测真的有用吗?去掉预训练LLM效果反而提升
11 Rethinking Fourier Transform for Long-term Time Series Forecasting: A Basis Functions Perspective
链接:https://neurips.cc/virtual/2024/poster/96209
作者:Runze Yang · Longbing Cao · JIE YANG · li jianxun
关键词:长时预测,傅里叶变换
12 Introducing Spectral Attention for Long-Range Dependency in Time Series Forecasting
链接:https://neurips.cc/virtual/2024/poster/94305
作者:Bong Gyun Kang · Dongjun Lee · HyunGi Kim · Dohyun Chung · Sungroh Yoon
关键词:预测,谱域注意力,长期依赖
13 Parsimony or Capability? Decomposition Delivers Both in Long-term Time Series Forecasting
链接:https://neurips.cc/virtual/2024/poster/93133
arXiv:https://arxiv.org/abs/2401.11929
作者:Jinliang Deng · Feiyang Ye · Du Yin · Xuan Song · Ivor Tsang · Hui Xiong
关键词:长时预测
14 Structured Matrix Basis for Multivariate Time Series Forecasting with Interpretable Dynamics
链接:https://neurips.cc/virtual/2024/poster/94383
作者:Xiaodan Chen · Xiucheng Li · Xinyang Chen · Zhijun Li
关键词:预测,可解释性,动态性
15 DeformableTST: Transformer for Time Series Forecasting without Over-reliance on Patching
链接:https://neurips.cc/virtual/2024/poster/96221
作者:Donghao Luo · Xue Wang
关键词:预测,Transformer,Patch
16 Time-FFM: Towards LM-Empowered Federated Foundation Model for Time Series Forecasting
链接:https://neurips.cc/virtual/2024/poster/95835
arXiv:https://arxiv.org/abs/2405.14252
作者:Qingxiang Liu · Xu Liu · Chenghao Liu · Qingsong Wen · Yuxuan Liang
关键词:预测,联邦学习,基础模型
17 PGN: The RNN's New Successor is Effective for Long-Range Time Series Forecasting
链接:https://neurips.cc/virtual/2024/poster/92992
arXiv:https://arxiv.org/abs/2409.17703
代码:https://github.com/Water2sea/TPGN
作者:Yuxin Jia · Youfang Lin · Jing Yu · Shuo Wang · Tianhao Liu · Huaiyu Wan
关键词:长时预测,RNN
18 SOFTS: Efficient Multivariate Time Series Forecasting with Series-Core Fusion
链接:https://neurips.cc/virtual/2024/poster/96390
arXiv:https://arxiv.org/abs/2404.14197
代码:https://github.com/Secilia-Cxy/SOFTS
作者:Han Lu · Xu-Yang Chen · Han-Jia Ye · De-Chuan Zhan
关键词:预测,MLP
19 Multivariate Probabilistic Time Series Forecasting with Correlated Errors
链接:https://neurips.cc/virtual/2024/poster/94440
arXiv:https://arxiv.org/abs/2409.18479
作者:Zhihao Zheng · Lijun Sun
关键词:概率预测,不确定性量化
20 CycleNet: Enhancing Time Series Forecasting through Modeling Periodic Patterns
链接:https://neurips.cc/virtual/2024/poster/94391
arXiv:https://arxiv.org/abs/2409.18479
代码:https://github.com/ACAT-SCUT/CycleNet
作者:Shengsheng Lin · Weiwei Lin · Xinyi Hu · Wentai Wu · Ruichao Mo · Haocheng Zhong
关键词:长时预测,周期建模
科学最Top:时序论文28|CycleNet:通过对周期模式进行建模增强时间序列预测
21 Analysing Multi-Task Regression via Random Matrix Theory with Application to Time Series Forecasting
链接:https://neurips.cc/virtual/2024/poster/95988
作者:Romain Ilbert · Malik Tiomoko · Cosme Louart · Ambroise Odonnat · Vasilii Feofanov · Themis Palpanas · Ievgen Redko
关键词:预测,多任务回归,随机矩阵理论
22 CondTSF: One-line Plugin of Dataset Condensation for Time Series Forecasting
链接:https://neurips.cc/virtual/2024/poster/95627
arXiv:https://arxiv.org/abs/2406.02131
代码:https://github.com/RafaDD/CondTSF
作者:Jianrong Ding · Zhanyu Liu · Guanjie Zheng · Haiming Jin · Linghe Kong
关键词:预测,插件
23 Scaling Law for Time Series Forecasting
链接:https://neurips.cc/virtual/2024/poster/96119
arXiv:https://arxiv.org/pdf/2405.15124
代码:https://github.com/JingzheShi/ScalingLawForTimeSeriesForecasting
作者:Jingzhe Shi · Qinwei Ma · Huan Ma · Lei Li
关键词:预测,Scaling Law
24 From News to Forecast: Integrating Event Analysis in LLM-Based Time Series Forecasting with Reflection
链接:https://neurips.cc/virtual/2024/poster/93316
arXiv:https://arxiv.org/abs/2409.17515
作者:Xinlei Wang · Maike Feng · Jing Qiu · Jinjin Gu · Junhua Zhao
关键词:预测,LLM,事件融合
25 From Similarity to Superiority: Channel Clustering for Time Series Forecasting
链接:https://neurips.cc/virtual/2024/poster/95539
arXiv:https://arxiv.org/abs/2404.01340
作者:Jialin Chen · Jan Eric Lenssen · Aosong Feng · Weihua Hu · Matthias Fey · Leandros Tassiulas · Jure Leskovec · Rex Ying
关键词:预测,通道聚类
AI论文速读 | CCM:从相似到超越:时间序列预测的通道聚类
26 TimeXer: Empowering Transformers for Time Series Forecasting with Exogenous Variables
链接:https://neurips.cc/virtual/2024/poster/95770
arXiv:https://arxiv.org/abs/2402.19072
作者:Yuxuan Wang · Haixu Wu · Jiaxiang Dong · Guo Qin · Haoran Zhang · Yong Liu · Yun-Zhong Qiu · Jianmin Wang · Mingsheng Long
关键词:预测,外生变量,Transformer
AI论文速读 | TimeXer:让 Transformer能够利用外部变量进行时间序列预测
27 ElasTST: Towards Robust Varied-Horizon Forecasting with Elastic Time-Series Transformer
链接:https://neurips.cc/virtual/2024/poster/93264
作者:Jiawen Zhang · Shun Zheng · Xumeng Wen · Xiaofang Zhou · Jiang Bian · Jia Li
关键词:预测,稳健性,Patch
28 Are Self-Attentions Effective for Time Series Forecasting?
链接:https://neurips.cc/virtual/2024/poster/94012
arXiv:https://arxiv.org/abs/2405.16877
作者:Dongbin Kim · Jinseong Park · Jaewook Lee · Hoki Kim
关键词:预测,交叉注意力
29 Tiny Time Mixers (TTMs): Fast Pre-trained Models for Enhanced Zero/Few-Shot Forecasting of Multivariate Time Series
链接:https://neurips.cc/virtual/2024/poster/96748
arXiv:https://arxiv.org/abs/2401.03955
代码:https://github.com/ibm-granite/granite-tsfm/tree/main/tsfm_public/models/tinytimemixer
Huggingface:https://huggingface.co/ibm-granite/granite-timeseries-ttm-v1
作者:Vijay Ekambaram · Arindam Jati · Pankaj Dayama · Sumanta Mukherjee · Nam Nguyen · WESLEY M GIFFORD · Chandra Reddy · Jayant Kalagnanam
关键词:零样本/少样本预测
AI蜗牛车:IBM Research:轻量级时间序列大模型提升Few-shot Learning时序预测效果
30 SARAD: Spatial Association-Aware Anomaly Detection and Diagnosis for Multivariate Time Series
链接:https://neurips.cc/virtual/2024/poster/94119
作者:Zhihao Dai · Ligang He · Shuanghua Yang · Matthew Leeke
关键词:异常检测,空间关联感知
31 Utilizing Image Transforms and Diffusion Models for Generative Modeling of Short and Long Time Series
链接:https://neurips.cc/virtual/2024/poster/96819
作者:Ilan Naiman · Nimrod Berman · Itai Pemper · Idan Arbiv · Gal Fadlon · Omer Asher · Omri Azencot
关键词:分类(长时),判别(短时)
32 Con4m: Context-aware Consistency Learning Framework for Segmented Time Series Classification
链接:https://neurips.cc/virtual/2024/poster/93973
arXiv:https://arxiv.org/abs/2408.00041
作者:Junru Chen · Tianyu Cao · Jing Xu · Jiahe Li · Zhilong Chen · Tao Xiao · YANG YANG
关键词:分类
时序人:NeurIPS 2024 | 分段时序多分类任务下的一致性学习框架
33 Peri-midFormer: Periodic Pyramid Transformer for Time Series Analysis
链接:https://neurips.cc/virtual/2024/poster/96575
作者:Qiang Wu · Gechang Yao · Zhixi Feng · Yang Shuyuan
关键词:分析,Transformer
34 Shape analysis for time series
链接:https://neurips.cc/virtual/2024/poster/95718
作者:Thibaut Germain · Samuel Gruffaz · Charles Truong · Alain Durmus · Laurent Oudre
关键词:分析,生理时序,无监督
35 UNITS: A Unified Multi-Task Time Series Model
链接:https://neurips.cc/virtual/2024/poster/93709
arXiv:https://arxiv.org/abs/2403.00131
代码:https://github.com/mims-harvard/UniTS
作者:Shanghua Gao · Teddy Koker · Owen Queen · Tom Hartvigsen · Theodoros Tsiligkaridis · Marinka Zitnik
关键词:多任务,基础模型
36 Large Pre-trained time series models for cross-domain Time series analysis tasks
链接:https://neurips.cc/virtual/2024/poster/93205
arXiv:https://arxiv.org/abs/2311.11413
代码:https://github.com/kage08/SegmentTS/
作者:Harshavardhan Prabhakar Kamarthi · B. Aditya Prakash
关键词:分析,跨域,预训练
37 Segment, Shuffle, and Stitch: A Simple Mechanism for Improving Time-Series Representations
链接:https://neurips.cc/virtual/2024/poster/92935
arXiv:https://arxiv.org/abs/2405.20082
代码:https://github.com/shivam-grover/S3-TimeSeries
作者:Shivam Grover · Amin Jalali · Ali Etemad
关键词:表示学习
38 Task-oriented Time Series Imputation Evaluation via Generalized Representers
链接:https://neurips.cc/virtual/2024/poster/93717
代码:https://github.com/hkuedl/Task-Oriented-Imputation
作者:Zhixian Wang · Linxiao Yang · Liang Sun · Qingsong Wen · Yi Wang
关键词:插补,评估方法
39 Exploiting Representation Curvature for Boundary Detection in Time Series
链接:https://neurips.cc/virtual/2024/poster/94837
作者:Yooju Shin · Jaehyun Park · Susik Yoon · Hwanjun Song · Byung Suk Lee · Jae-Gil Lee
关键词:边界检测
40 Learning diverse causally emergent representations from time series data
链接:https://neurips.cc/virtual/2024/poster/92973
作者:David McSharry · Christos Kaplanis · Fernando Rosas · Pedro A.M Mediano
关键词:因果涌现
41 SDformer: Similarity-driven Discrete Transformer For Time Series Generation
链接:https://neurips.cc/virtual/2024/poster/94642
作者:Zhicheng Chen · FENG SHIBO · Zhong Zhang · Xi Xiao · Xingyu Gao · Peilin Zhao
关键词:时间序列生成,离散Transformer
42 FIDE: Frequency-Inflated Conditional Diffusion Model for Extreme-Aware Time Series Generation
链接:https://neurips.cc/virtual/2024/poster/96595
作者:Asadullah Hill Galib · Pang-Ning Tan · Lifeng Luo
关键词:时间序列生成,条件扩散模型
43 ANT: Adaptive Noise Schedule for Time Series Diffusion Models
链接:https://neurips.cc/virtual/2024/poster/96850
作者:Seunghan Lee · Kibok Lee · Taeyoung Park
关键词:扩散模型,自适应噪声
44 Trajectory Flow Matching with Applications to Clinical Time Series Modelling
链接:https://neurips.cc/virtual/2024/poster/94212
作者:Xi (Nicole) Zhang · Yuan Pu · Yuki Kawamura · Andrew Loza · Yoshua Bengio · Dennis Shung · Alexander Tong
关键词:建模,临床时间序列,流匹配
45 Chimera: Effectively Modeling Multivariate Time Series with 2-Dimensional State Space Models
链接:https://neurips.cc/virtual/2024/poster/93680
arXiv:https://arxiv.org/abs/2406.04320
作者:Ali Behrouz · Michele Santacatterina · Ramin Zabih
关键词:建模,状态空间模型
46 Reinforced Cross-Domain Knowledge Distillation on Time Series Data
链接:https://neurips.cc/virtual/2024/poster/93330
作者:QING XU · Min Wu · Xiaoli Li · Kezhi Mao · Zhenghua Chen
关键词:知识蒸馏,无监督域适应
47 Boosting Transferability and Discriminability for Time Series Domain Adaptation
链接:https://neurips.cc/virtual/2024/poster/94429
作者:Mingyang Liu · Xinyang Chen · Yang Shu · Xiucheng Li · Weili Guan · Liqiang Nie
关键词:域适应,迁移性,判别性
48 Towards Editing Time Series
链接:https://neurips.cc/virtual/2024/poster/93468
作者:Baoyu Jing · Shuqi Gu · Tianyu Chen · Zhiyu Yang · Dongsheng Li · Jingrui He · Kan Ren
关键词:时间序列编辑,合成时间序列
49 Conformalized Time Series with Semantic Features
链接:https://neurips.cc/virtual/2024/poster/95653
作者:Baiting Chen · Zhimei Ren · Lu Cheng
关键词:共形预测,分布偏移
50 ChronoEpilogi: Scalable Time Series Selection with Multiple Solutions
链接:https://neurips.cc/virtual/2024/poster/93042
作者:Etienne Vareille · Michele Linardi · Vassilis Christophides · Ioannis Tsamardinos
关键词:时间序列选择
51 Graph Neural Flows for Unveiling Systemic Interactions Among Irregularly Sampled Time Series
链接:https://neurips.cc/virtual/2024/poster/93348
作者:Giangiacomo Mercatali · Andre Freitas · Jie Chen
关键词:不规则时间序列,因果,常微分方程
52 Tri-Level Navigator: LLM-Empowered Tri-Level Learning for Time Series OOD Generalization
链接:https://neurips.cc/virtual/2024/poster/94588
作者:Chengtao Jian · Kai Yang · Yang Jiao
关键词:分布外泛化,LLM
53 UniMTS: Unified Pre-training for Motion Time Series
链接:https://neurips.cc/virtual/2024/poster/96073
作者:Xiyuan Zhang · Diyan Teng · Ranak Roy Chowdhury · Shuheng Li · Dezhi Hong · Rajesh Gupta · Jingbo Shang
关键词:运动时间序列,预训练
54 Medformer: A Multi-Granularity Patching Transformer for Medical Time-Series Classification
链接:https://neurips.cc/virtual/2024/poster/93940
arXiv:https://arxiv.org/abs/2405.19363
代码:https://github.com/DL4mHealth/Medformer
作者:Yihe Wang · Nan Huang · Taida Li · Yujun Yan · Xiang Zhang
关键词:分类,医疗时间序列
55 Abstracted Shapes as Tokens - A Generalizable and Interpretable Model for Time-series Classification
链接:https://neurips.cc/virtual/2024/poster/93522
作者:Yunshi Wen · Tengfei Ma · Lily Weng · Lam Nguyen · Anak Agung Julius
关键词:分类,可解释性,泛化性
D&B Track
56 IncomeSCM: From tabular data set to time-series simulator and causal estimation benchmark
链接:https://neurips.cc/virtual/2024/poster/97776
arXiv:https://arxiv.org/abs/2405.16069
代码:https://github.com/Healthy-AI/IncomeSCM
作者:Fredrik Johansson(独立作者)
关键词:因果估计,模拟器
57 The Elephant in the Room: Towards A Reliable Time-Series Anomaly Detection Benchmark
链接:https://neurips.cc/virtual/2024/poster/97690
代码:https://github.com/TheDatumOrg/TSB-AD
作者:Qinghua Liu · John Paparrizos
关键词:异常检测,benchmark
58 Building Timeseries Dataset: Empowering Large-Scale Building Analytics
链接:https://neurips.cc/virtual/2024/poster/97839
arXiv:https://arxiv.org/abs/2406.08990
代码:https://github.com/cruiseresearchgroup/DIEF_BTS
作者:Arian Prabowo · Xiachong LIN · Imran Razzak · Hao Xue · Emily Yap · Matthew Amos · Flora Salim
关键词:建筑时间序列,数据集,
59 Time-MMD: A New Multi-Domain Multimodal Dataset for Time Series Analysis
链接:https://neurips.cc/virtual/2024/poster/97582
arXiv:https://arxiv.org/abs/2406.08627
library代码:https://github.com/AdityaLab/MM-TSFlib
dataset 代码:https://github.com/AdityaLab/Time-MMD
作者:Haoxin Liu · Shangqing Xu · Zhiyuan Zhao · Lingkai Kong · Harshavardhan Prabhakar Kamarthi · Aditya Sasanur · Megha Sharma · Jiaming Cui · Qingsong Wen · Chao Zhang · B. Aditya Prakash
关键词:数据集,分析,多模态,多域
60 TSGM: A Flexible Framework for Generative Modeling of Synthetic Time Series
链接:https://neurips.cc/virtual/2024/poster/97532
arXiv:https://arxiv.org/abs/2305.11567
作者:Alexander Nikitin · Letizia Iannucci · Samuel Kaski
关键词:时间序列生成,合成时间序列,框架
60 TSGM: A Flexible Framework for Generative Modeling of Synthetic Time Series
链接:https://neurips.cc/virtual/2024/poster/97532
arXiv:https://arxiv.org/abs/2305.11567
作者:Alexander Nikitin · Letizia Iannucci · Samuel Kaski
关键词:时间序列生成,合成时间序列,框架
61 ProbTS: Benchmarking Point and Distributional Forecasting across Diverse Prediction Horizons
链接:https://neurips.cc/virtual/2024/poster/97527
arXiv:https://arxiv.org/abs/2310.07446
代码:https://github.com/microsoft/ProbTS
作者:Jiawen Zhang · Xumeng Wen · Zhenwei Zhang · Shun Zheng · Jia Li · Jiang Bian
关键词:概率预测,benchmark
相关链接
NeurIPS 24 Accepted Papers:https://neurips.cc/virtual/2024/papers.html
欢迎各位作者投稿近期有关时空数据和时间序列录用的顶级会议和期刊的优秀文章解读,我们将竭诚为您宣传,共同学习进步。如有意愿,请通过后台私信与我们联系。
推荐阅读
ICML 2024 时间序列(Time Series)和时空数据(Spatial-Temporal)论文总结【抢先版】
ICLR 2024 | 时空数据(Spatial-Temporal)论文汇总|
ICLR 2024 | 时间序列(Time Series)论文
WWW 2024 | 时间序列(Time Series)和时空数据(Spatial-Temporal)论文
WSDM 2024 2023 | 时空数据(Spatial-Temporal)和时间序列(Time Series)论文总结
IJCAI 2024 | 时空数据(Spatial-Temporal)论文总结
SIGMOD 2024 | 时空数据(Spatial-Temporal)和时间序列论文总结
ICDE 2024 | 时空(Spatial-Temporal)数据论文总结
ICDE 2024 | 时间序列(Time Series)论文总结
IJCAI 2023 | 时空数据(Spatial-Temporal)论文总结
AAAI 2024 | 时间序列(Time Series)和时空数据(Spatial-Temporal)论文总结
如果觉得有帮助还请分享,在看,点赞