SIGMOD 2024 | 时空数据(Spatial-Temporal)和时间序列论文总结

文摘   2024-06-12 12:37   北京  

SIGMOD2024于6月9号-6月14号正在智利圣地亚哥举行(Santiago Chile)

本文总结了SIGMOD 2024有关时间序列(time series),包括时序数据库,查询优化等内容。以及时空数据(spatial-temporal data)的相关论文,主要包含时空时空数据管理,时空数据挖掘,数据库等内容,如有疏漏,欢迎大家补充。笔者对DB了解浅薄,如有表述不当,欢迎大家指正。

SIGMOD24的detailed program中有专门的时空数据的session。

SIGMOD 时空数据Session

1. Origin-Destination Travel Time Oracle for Map-based Services

链接https://dl.acm.org/doi/abs/10.1145/3617337

作者:Yan Lin (Beijing Jiaotong University); Huaiyu Wan (Beijing Jiaotong University); Jilin Hu (Aalborg University)*; Shengnan Guo (Beijing Jiaotong University); Bin Yang (Aalborg University); Youfang Lin (Beijing Jiaotong University); Christian S. Jensen (Aalborg University)

关键词:ETA(OD),扩散模型

代码https://github.com/Logan-Lin/DOT

公众号解读时空数据学习:本组成果 |【SIGMOD 2024】DOT: 基于扩散模型的OD矩阵行程时间估计

DOT

2. Temporal JSON Keyword Search

链接https://dl.acm.org/doi/abs/10.1145/3654980

作者:Curtis Dyreson (Utah State University)*; Amani Shatnawi (Yarmouk University ); Sourav S Bhowmick (Nanyang Technological University); Vishal Sharma (University of Nevada, Las Vegas)

关键词:时序关键词搜索,JSON

代码https://github.com/cdyreson/temporalHierarchicalKeywordSearch

Temporal Search

3. Proximity Queries on Point Clouds using Rapid Construction Path Oracle

链接https://dl.acm.org/doi/abs/10.1145/3639261

作者:Yinzhao YAN (Hong Kong University of Science and Technology)*; Raymond Chi-Wing Wong (Hong Kong University of Science and Technology)

关键词:POI最短路径查询,Oracle

4. Optimizing Time Series Queries with Versions

链接https://dl.acm.org/doi/abs/10.1145/3654962

作者:Rui Kang (Tsinghua University); Shaoxu Song (Tsinghua University)*

关键词:时间序列查询,物联网数据库

5. Hierarchical Cut Labelling – Scaling Up Distance Queries on Road Networks

链接https://dl.acm.org/doi/abs/10.1145/3626731

作者:Muhammad Farhan (Australian National University)*; Henning Koehler (Massey University); Robert Ohms (Australian National University); Qing Wang (ANU)

关键词:最短路查询,路网,层次划分

6. Nexus: Correlation Discovery over Collections of Spatio-Temporal Tabular Data

链接https://dl.acm.org/doi/abs/10.1145/3654957

作者:Yue Gong (The University of Chicago)*; Sainyam Galhotra (Cornell University); Raul Castro Fernandez (The University of Chicago)

关键词:数据发现,时空数据,相关性分析,假设生成,表格数据

NEXUS

7. DGC: Training Dynamic Graphs with Spatio-Temporal Non-Uniformity using Graph Partitioning by Chunks

链接https://dl.acm.org/doi/abs/10.1145/3626724

作者:Fahao Chen (The University of Aizu); Peng Li (the University of Aizu)*; Celimuge Wu (The University of Electro-Communications)

关键词:动态图,分布式机器学习,图划分

DGC

8. Akane: Perplexity-Guided Time Series Data Cleaning

链接https://dl.acm.org/doi/abs/10.1145/3654993

作者:Xiaoyu Han (Fudan University)*; Haoran Xiong (Fudan University); Zhenying He (Fudan University); Peng Wang (" Fudan University, China"); Chen Wang (" Tsinghua University, China"); X. Sean Wang (Fudan University)

关键词:时间序列数据清洗

9. Time Series Representation for Visualization in Apache IoTDB

链接https://dl.acm.org/doi/abs/10.1145/3639290

作者:Lei Rui (Tsinghua University); Xiangdong Huang (Tsinghua University); Shaoxu Song (Tsinghua University)*; Yuyuan Kang (University of Wisconsin-Madison); Chen Wang (Timecho Limited); Jianmin Wang ("Tsinghua University, China")

关键词:时序数据可视化,数据库查询处理

Apache IoTDB

10. MOST: Model-Based Compression with Outlier Storage for Time Series Data

链接https://dl.acm.org/doi/abs/10.1145/3626737

作者:Zehai Yang (Institute of Computing Technology, CAS & University of Chinese Academy of Sciences); Shimin Chen (Chinese Academy of Sciences)*

关键词:时间序列数据异常存储压缩

公众号解读时空实验室:SIGMOD 2023 | MOST:基于模型的压缩与离群值存储的时间序列数据

MOSTDB

11. Correlation Joins over Time Series Data Streams Utilizing Complementary Dimension Reduction and Transformation

链接https://dl.acm.org/doi/abs/10.1145/3626722

作者:AmirReza Alizade Nikoo (University of Zürich)*; Sven Helmer (University of Zurich); Michael H Böhlen (University of Zurich)

关键词:时间序列,数据流, join processing

12. (Demo)UniTS: A Universal Time Series Analysis Framework Powered by Self-supervised Representation Learning

链接https://dl.acm.org/doi/abs/10.1145/3626246.3654733

作者:Zhiyu Liang (Harbin Institute of Technology); Chen Liang (Harbin Institute of technology); Zheng Liang (Harbin Institute of Technology); Hongzhi Wang (Harbin Institute of Technology); Bo Zheng (CnosDB Inc.)

关键词:时间序列分析,自监督学习,预训练

代码https://github.com/LceOmlet/UniTS

UniTS

相关链接

SIGMOD24的Detailed Program(全部论文和对应session):https://2024.sigmod.org/program_sigmod.shtml


推荐阅读

ICDE 2024 | 时间序列(Time Series)论文总结

ICDE 2024 | 时空(Spatial-Temporal)数据论文总结

点击文末阅读原文跳转笔者知乎链接(访问论文链接更方便)。

如果觉得有帮助还请分享,在看,点赞


时空探索之旅
分享时空数据和时间序列前沿文献。偶尔聊聊影视剧。
 最新文章