ICDM 2024 | 时空数据(Spatial-Temporal)论文总结

文摘   2024-12-23 08:17   北京  

ICDM 2024于2024年12月9号-12月12号在阿联酋阿布扎比(Abu Dhabi, UAE)举行。

文总结了ICDM 2024有关时空数据(spatial-temporal data)的相关论文,如有疏漏,欢迎大家补充。

时空数据Topic:交通预测,事故预测,轨迹生成,POI查询,信控优化等内容。总计10篇,其中regular4篇,short5篇,Demo1篇。

点击文末阅读原文跳转笔者知乎链接(跳转论文链接更方便)。

Regular

  1. Towards Efficient Ridesharing via Order-Vehicle Pre-Matching Using Attention Mechanism
  2. LISA: Learning-Integrated Space Partitioning Framework for Traffic Accident Forecasting on Heterogeneous Spatiotemporal Data
  3. Align Along Time and Space: A Graph Latent Diffusion Model for Traffic Dynamics Prediction
  4. Traffic Pattern Sharing for Federated Traffic Flow Prediction with Personalization

Short

  1. MetaSTC: A Meta Spatio-Temporal Learning Paradigm for Traffic Flow Prediction
  2. 2DXformer: Dual Transformers for Wind Power Forecasting with Dual Exogenous Variables
  3. Futures Quantitative Investment with Heterogeneous Continual Graph Neural Network
  4. Controllable Visit Trajectory Generation with Spatiotemporal Constraints
  5. A Momentum Contrastive Learning Framework for Query-POI Matching

Demo

  1. VIA AI: Reliable Deep Reinforcement Learning for Traffic Signal Control

Regular

1 Towards Efficient Ridesharing via Order-Vehicle Pre-Matching Using Attention Mechanism

链接https://liuzhidan.github.io/files/2024-ICDM-PreMR.pdf

作者:Zhidan Liu, Jinye Lin, Zhiyu Xia, Chao Chen, and Kaishun Wu

关键词:共享匹配,Ridesharing, Order-vehicle pre-matching, Self-attention mechanism, Spatial-temporal

2 LISA: Learning-Integrated Space Partitioning Framework for Traffic Accident Forecasting on Heterogeneous Spatiotemporal Data

作者:Bang An, Xun Zhou, Amin Khezerlou, Nick Street, Jinping Guan, and Jun Luo

关键词:事故预测,Spatialtemporal Data Mining, Traffic Accident Forecasting

3 Align Along Time and Space: A Graph Latent Diffusion Model for Traffic Dynamics Prediction

作者:Yuhang Liu, Yingxue Zhang, Xin Zhang, Yu Yang, Yiqun Xie, Sahar Ghanipoor Machiani, Yanhua Li, and Jun Luo

关键词:扩散模型,urban dynamics prediction, latent diffusion models, spatial-temporal data mining

4 Traffic Pattern Sharing for Federated Traffic Flow Prediction with Personalization

作者:Hang Zhou, Wentao Yu, Sheng Wan, Yongxin Tong, Tianlong Gu, and Chen Gong

关键词:spatial-temporal data, traffic flow prediction, personalized federated learning

Short

5 MetaSTC: A Meta Spatio-Temporal Learning Paradigm for Traffic Flow Prediction

作者:Kexin Xu, Zhemeng Yu, Yucen Gao, Songjian Zhang, Jun Fang, Xiaofeng Gao, and Guihai Chen

关键词:Spatio-Temporal Data Mining, Meta-Learning, Traffic Flow Prediction, Backbone Agnostic

6 2DXformer: Dual Transformers for Wind Power Forecasting with Dual Exogenous Variables

作者:Yajuan Zhang, Jiahai Jiang, Yule Yan, liang Yang, and ping zhang

关键词:wind power forecasting, spatiotemporal forecasting, exogenous variables, variable correlation

7 Futures Quantitative Investment with Heterogeneous Continual Graph Neural Network

作者:Zhizhong Tan, Min Hu, Bin Liu, and Guosheng Yin

关键词:Continual learning, futures price forecasting, graph neural network, spatio-temporal data

8 Controllable Visit Trajectory Generation with Spatiotemporal Constraints

作者:Yuting Qiang, Jianbin Zheng, Lixia Wu, Haomin Wen, Junhong Lou, and Minhui Deng

关键词:cross-modal learning, contrastive learning, query-POI matching

9 A Momentum Contrastive Learning Framework for Query-POI Matching

作者:Haowen Lin, John Krumm, Cyrus Shahabi, and Li Xiong

关键词:轨迹生成,Spatial-temporal systems, Controlled generation

Demo

10 VIA AI: Reliable Deep Reinforcement Learning for Traffic Signal Control

作者:Matvey Gerasyov, Dmitrii Kiselev, Maxim Beketov, and Ilya Makarov

关键词:信控优化

相关链接

ICDM 2024接受论文https://icdm2024.org/accepted_papers/


欢迎各位作者投稿近期有关时空数据时间序列录用的顶级会议期刊的优秀文章解读,我们将竭诚为您宣传,共同学习进步。如有意愿,请通过后台私信与我们联系。


推荐阅读

KDD 2024 | 时空数据(Spatio-temporal) Research论文总结

KDD 2024 | 时空数据(Spatio-temporal) ADS论文总结

CIKM 2024 | 时空数据(Spatial-temporal)论文总结

WSDM 2024 2023 | 时空数据(Spatial-Temporal)和时间序列(Time Series)论文总结

ECML PKDD 2024 | 时空数据(Spatial-Temporal)和时间序列(Time series)论文总结

点击文末阅读原文跳转笔者知乎链接(跳转论文链接更方便)。

如果觉得有帮助还请分享,在看,点赞

时空探索之旅
分享时空数据和时间序列前沿文献。偶尔聊聊影视剧。
 最新文章