VLDB 2024于2024年8月26号-8月30号在中国广州举行。
本文总结了VLDB 2024有关时间序列(time series data)的相关论文,共22篇,主要包含如有疏漏,欢迎大家补充。
时间序列Topic:预测,分类,异常检测,插补,生成,数据管理等
DecLog: Decentralized Logging in Non-Volatile Memory for Time Series Database Systems TSGBench: Time Series Generation Benchmark ImDiffusion: Imputed Diffusion Models for Multivariate Time Series Anomaly Detection A Shapelet-based Framework for Unsupervised Multivariate Time Series Representation Learning An Experimental Evaluation of Anomaly Detection in Time Series Weakly Guided Adaptation for Robust Time Series Forecasting Multiple Time Series Forecasting with Dynamic Graph Modeling A Multi-Scale Decomposition MLP-Mixer for Time Series Analysis Raising the ClaSS of Streaming Time Series Segmentation Visualization-aware Time Series Min-Max Caching with Error Bound Guarantees CIVET: Exploring Compact Index for Variable-Length Subsequence Matching on Time Series TFB: Towards Comprehensive and Fair Benchmarking of Time Series Forecasting Methods AutoTSAD: Unsupervised Holistic Anomaly Detection for Time Series Data DARKER: Efficient Transformer with Data-driven Attention Mechanism for Time Series Apache TsFile: An IoT-native Time Series File Format TimeCSL: Unsupervised Contrastive Learning of General Shapelets for Explorable Time Series Analysis [Demo] TSGAssist: An Interactive Assistant Harnessing LLMs and RAG for Time Series Generation Recommendations and Benchmarking [Demo] ImputeVIS: An Interactive Evaluator to Benchmark Imputation Techniques for Time Series Data [Demo] A Demonstration of TENDS: Time Series Management System based on Model Selection [Demo] SEER: An End-to-End Toolkit for Benchmarking Time Series Database Systems in Monitoring Applications [Demo] DeepSketch: A Query Sketching Interface for Deep Time Series Similarity Search [Demo] Clean4TSDB: A Data Cleaning Tool for Time Series Databases
1. DecLog: Decentralized Logging in Non-Volatile Memory for Time Series Database Systems
链接:https://www.vldb.org/pvldb/vol17/p1-zheng.pdf
代码:https://github.com/Chriszblong/DecLog
作者:Bolong Zheng, Yongyong Gao, Jingyi Wan, Lingsen Yan, Long Hu, Bo Liu, Yunjun Gao, Xiaofang Zhou, Christian S. Jensen
关键词:时间序列数据库管理系统 (TSDBMS)
2. TSGBench: Time Series Generation Benchmark
链接:https://www.vldb.org/pvldb/vol17/p305-huang.pdf
代码:https://github.com/YihaoAng/TSGBench/
作者:Yihao Ang, Qiang Huang, Yifan Bao, Anthony K. H. Tung, Zhiyong Huang
关键词:Time Series Generation (TSG), Benchmark
3. ImDiffusion: Imputed Diffusion Models for Multivariate Time Series Anomaly Detection
链接:https://www.vldb.org/pvldb/vol17/p359-zhang.pdf
代码:https://github.com/17000cyh/IMDiffusion
作者:Yuhang Chen, Chaoyun Zhang, Minghua Ma, Yudong Liu, Ruomeng Ding, Bowen Li, Shilin He, Saravan Rajmohan, Qingwei Lin, Dongmei Zhang
关键词:异常检测,扩散,插补
4. A Shapelet-based Framework for Unsupervised Multivariate Time Series Representation Learning
链接:https://www.vldb.org/pvldb/vol17/p386-wang.pdf
代码:https://github.com/real2fish/CSL
作者:Zhiyu Liang, Jianfeng Zhang, Chen Liang, Hongzhi Wang, Zheng Liang, Lujia Pan
关键词:时间序列表示学习,无监督
5. An Experimental Evaluation of Anomaly Detection in Time Series
链接:https://www.vldb.org/pvldb/vol17/p483-zhang.pdf
代码:https://github.com/zaqthss/experiment-tsad
作者:Aoqian Zhang, Shuqing Deng, Dongping Cui, Ye Yuan, Guoren Wang
关键词:异常检测,评估
6. Weakly Guided Adaptation for Robust Time Series Forecasting
链接:https://www.vldb.org/pvldb/vol17/p766-cheng.pdf
代码:https://github.com/YunyaoCheng/DARF
作者:Yunyao Cheng, Peng Chen, Chenjuan Guo, Kai Zhao, Qingsong Wen, Bin Yang, Christian S. Jensen
关键词:稳健时间序列预测,弱监督
DI DaSE ECNU: PVLDB2024 | 弱监督域适应的鲁棒时间序列预测
7. Multiple Time Series Forecasting with Dynamic Graph Modeling
链接:https://www.vldb.org/pvldb/vol17/p753-zhao.pdf
代码:https://github.com/zhkai/MTSF-DG
作者:Kai Zhao, Chenjuan Guo, Yunyao Cheng, Peng Han, Miao Zhang, Bin Yang
关键词:时间序列预测,动态图
8. A Multi-Scale Decomposition MLP-Mixer for Time Series Analysis
链接:https://www.vldb.org/pvldb/vol17/p1723-zhong.pdf
代码:https://github.com/zshhans/MSD-Mixer
作者:Shuhan Zhong, Sizhe Song, Weipeng Zhuo, Guanyao Li, Yang Liu, S.-H. Gary Chan
关键词:时间序列分析,MLP
9. Raising the ClaSS of Streaming Time Series Segmentation
链接:https://www.vldb.org/pvldb/vol17/p1953-ermshaus.pdf
代码:https://github.com/ermshaua/classification-score-stream
作者:Arik Ermshaus, Patrick Schäfer, Ulf Leser
关键词:streaming time series segmentation (STSS)
10. Visualization-aware Time Series Min-Max Caching with Error Bound Guarantees
链接:https://www.vldb.org/pvldb/vol17/p2091-maroulis.pdf
代码:https://github.com/athenarc/MinMaxCache
作者:Stavros Maroulis, Vassilis Stamatopoulos, George Papastefanatos, Manolis Terrovitis
关键词: 时间序列可视化
11. CIVET: Exploring Compact Index for Variable-Length Subsequence Matching on Time Series
链接:https://www.vldb.org/pvldb/vol17/p2123-he.pdf
代码:https://github.com/CIVET-TS/CIVET
作者:Haoran Xiong, Hang Zhang, Zeyu Wang, Zhenying He, Peng Wang, X. Sean Wang
关键词:时间序列子序列匹配
12. TFB: Towards Comprehensive and Fair Benchmarking of Time Series Forecasting Methods
链接:https://www.vldb.org/pvldb/vol17/p2363-hu.pdf
代码:https://github.com/decisionintelligence/TFB
作者:Xiangfei Qiu, Jilin Hu, Lekui Zhou, Xingjian Wu, Junyang Linn Du, Buang Zhang, Chenjuan Guo, Aoying Zhou, Christian S. Jensen, Zhenli Sheng, Bin Yang
关键词:时间序列预测,benchmark
VLDB2024 |TFB: 全面且公平的时间序列预测方法评测基准
DI DaSE ECNU:VLDB2024 |TFB: 全面且公平的时间序列预测方法评测基准
13. AutoTSAD: Unsupervised Holistic Anomaly Detection for Time Series Data
链接:https://www.vldb.org/pvldb/vol17/p2987-schmidl.pdf
代码:https://hpi.de/naumann/s/autotsad
作者:Sebastian Schmidl, Felix Naumann, Thorsten Papenbrock
关键词:无监督,异常检测
14. DARKER: Efficient Transformer with Data-driven Attention Mechanism for Time Series
链接:https://www.vldb.org/pvldb/vol17/p3229-zuo.pdf
代码:https://github.com/rdzuo/darker
作者:Rundong Zuo, Guozhong Li, Rui Cao, Byron Choi, Jianliang Xu, Sourav S Bhowmick
关键词:时间序列分类,Transformer,高效
15. Apache TsFile: An IoT-native Time Series File Format
链接:https://www.vldb.org/pvldb/vol17/p4064-song.pdf
代码:https://github.com/apache/tsfile/
作者:Xin Zhao, Jialin Qiao, Xiangdong Huang, Chen Wang, Shaoxu Song, Jianmin Wang
关键词:物联网, Apache TsFile(物联网时序数据文件)
16. TimeCSL: Unsupervised Contrastive Learning of General Shapelets for Explorable Time Series Analysis
链接:https://www.vldb.org/pvldb/vol17/p4489-wang.pdf
代码:https://github.com/real2fish/CSL
作者:Zhiyu Liang, Chen Liang, Zheng Liang, Hongzhi Wang, Bo Zheng
关键词:Contrastive Shapelet Learning, Analysis
17. [Demo] TSGAssist: An Interactive Assistant Harnessing LLMs and RAG for Time Series Generation Recommendations and Benchmarking
链接:https://www.vldb.org/pvldb/vol17/p4309-huang.pdf
代码:https://github.com/YihaoAng/TSGAssist/
作者:Yihao Ang, Yifan Bao, Qiang Huang, Anthony K. H. Tung, Zhiyong Huang
关键词:时间序列生成,LLM,RAG
18. [Demo] ImputeVIS: An Interactive Evaluator to Benchmark Imputation Techniques for Time Series Data
链接:https://www.vldb.org/pvldb/vol17/p4329-khayati.pdf
代码:https://github.com/eXascaleInfolab/ImputeVIS
作者:Mourad Khayati, Quentin Nater, Jacques Pasquier
关键词:插补,benchmark
19. [Demo] A Demonstration of TENDS: Time Series Management System based on Model Selection
链接:https://www.vldb.org/pvldb/vol17/p4357-chen.pdf
代码:https://github.com/yoyo185644/TENDS
作者:Yuanyuan Yao, Shenjia Dai, Yilin Li, Lu Chen, Dimeng Li, Yunjun Gao, Tianyi Li
关键词:时间序列管理系统,模型选择
20. [Demo] SEER: An End-to-End Toolkit for Benchmarking Time Series Database Systems in Monitoring Applications
链接:https://www.vldb.org/pvldb/vol17/p4361-khayati.pdf
代码:https://github.com/eXascaleInfolab/seer
作者:Luca Althaus, Mourad Khayati, Abdelouahab Khelifati, Anton Dignös, Djellel Difallah, Philippe Cudre-Mauroux
关键词:时间序列数据库系统
21. [Demo] DeepSketch: A Query Sketching Interface for Deep Time Series Similarity Search
链接:https://www.vldb.org/pvldb/vol17/p4369-crotty.pdf
代码:https://github.com/andrewcrotty/dts3
作者:Zheng Zhang, Zhuhan Shao, Andrew Crotty
关键词:时间序列相似性检索
22. [Demo] Clean4TSDB: A Data Cleaning Tool for Time Series Databases
链接:https://www.vldb.org/pvldb/vol17/p4377-wang.pdf
作者:Xiaoou Ding, Song Yichen, Hongzhi Wang, Donghua Yang, Chen Wang, Jianmin Wang
关键词:数据清洗,时间序列数据库
相关链接
VLDB 2024 Accepted Paper:https://vldb.org/pvldb/volumes/17/
欢迎各位作者投稿近期有关时空数据和时间序列录用的顶级会议和期刊的优秀文章解读,我们将竭诚为您宣传,共同学习进步。如有意愿,请通过后台私信与我们联系。
推荐阅读
SIGMOD 2024 | 时空数据(Spatial-Temporal)和时间序列论文总结
ICDE 2024 | 时空(Spatial-Temporal)数据论文总结
ICDE 2024 | 时间序列(Time Series)论文总结
如果觉得有帮助还请分享,在看,点赞