SAO-LSSVM雪消融算法优化最小二乘支持向量机多特征分类预测

文摘   教育   2024-11-03 21:32   广东  

读完需要

6
分钟

速读仅需 2 分钟

请尊重原创劳动成果
转载请注明本文链接
及文章作者:机器学习之心

点击阅读原文或复制以下链接到浏览器获取文章完整源码和数据:
https://mbd.pub/o/bread/mbd-Z5WWmZpt

摘要:SAO-LSSVM雪消融算法优化最小二乘支持向量机多特征分类预测

1

   

基本介绍  

1.Matlab实现SAO-LSSVM雪消融算法优化最小二乘支持向量机多特征分类预测,运行环境Matlab2018b及以上;

2.输入12个特征,输出分4类,可视化展示分类准确率,可在下载区获取数据和程序内容。

3.算法优化LSSVM参数为:sig,gamma。

4.excel数据集,main为主程序,其他为函数文件,无需运行,分类效果如下:

注:程序和数据放在一个文件夹。

2

   

2.1

数据集

    

   

2.2

运行效果


   

完整代码链接:https://mbd.pub/o/bread/mbd-Z5WWmZpt

也可扫描二维码:

3


   

部分源码

%%  数据分析num_size = 0.7;                              % 训练集占数据集比例outdim = 1;                                  % 最后一列为输出num_samples = size(res, 1);                  % 样本个数res = res(randperm(num_samples), :);         % 打乱数据集(不希望打乱时,注释该行)num_train_s = round(num_size * num_samples); % 训练集样本个数f_ = size(res, 2) - outdim;                  % 输入特征维度
%% 划分训练集和测试集P_train = res(1: num_train_s, 1: f_)';T_train = res(1: num_train_s, f_ + 1: end)';M = size(P_train, 2);
P_test = res(num_train_s + 1: end, 1: f_)';T_test = res(num_train_s + 1: end, f_ + 1: end)';N = size(P_test, 2);
%% 数据归一化[p_train, ps_input] = mapminmax(P_train, 0, 1);p_test = mapminmax('apply', P_test, ps_input );t_train = T_train;t_test = T_test ;
%% 转置以适应模型p_train = p_train'; p_test = p_test';t_train = t_train'; t_test = t_test';



   

其他代码

嗯,细心的你会发现:https://mbd.pub/o/slowtrain/work

博客专家认证,机器学习领域创作者,2023博客之星TOP50,主做机器学习和深度学习时序、回归、分类、聚类和降维等程序设计和案例分析科研课题模型定制/横向项目模型仿真/职称学术论文辅导/模型程序讲解均可联系本人唯一QQ1153460737(其他均为盗版,注意甄别

技术交流群:购买博主任意代码或分享博主博文到任意三方平台后即可添加博主QQ进群

机器学习之心HML
机器学习和深度学习时序、回归、分类和聚类等程序设计与案例分析,CSDN博主机器学习之心,知乎、B站同名,由于博主公众号名称被别人占用,故加了HML,此号是官方账号,其余打着本人旗号做事本人概不负责,本人QQ1153460737。
 最新文章