读完需要
速读仅需 2 分钟
请尊重原创劳动成果
转载请注明本文链接
及文章作者:机器学习之心
摘要:太无敌!时序卷积组合Transformer!TCN-Transformer多变量回归预测
1
购买后可加博主QQ1153460737咨询交流。注意:其他非官方渠道购买的盗版代码不含模型咨询交流服务,大家注意甄别,谢谢。
2
专栏目录
完整专栏扫描二维码:
3
%% 创建混合CNN-GRU网络架构
% 输入特征维度
numFeatures = size(inputn_train,1);
% 输出类别数
numClasses = 4;
FiltZise = 10;
% 创建"CNN-GRU"模型
layers = [...
% 输入特征
sequenceInputLayer([numFeatures 1 1],'Name','input')
sequenceFoldingLayer('Name','fold')
% CNN特征提取
convolution2dLayer([FiltZise 1],32,'Padding','same','WeightsInitializer','he','Name','conv','DilationFactor',1);
batchNormalizationLayer('Name','bn')
eluLayer('Name','elu')
averagePooling2dLayer(1,'Stride',FiltZise,'Name','pool1')
% 展开层
sequenceUnfoldingLayer('Name','unfold')
% 平滑层
flattenLayer('Name','flatten')
% GRU特征学习
gruLayer(128,'Name','lstm1','RecurrentWeightsInitializer','He','InputWeightsInitializer','He')
% 全连接层
fullyConnectedLayer(numClasses,'Name','fc')
classificationLayer('Name','cf')];
layers = layerGraph(layers);
layers = connectLayers(layers,'fold/miniBatchSize','unfold/miniBatchSize');
%% CNNGRU训练选项
% 批处理样本
miniBatchSize =10;
% 最大迭代次数
MaxEpochs = 100;
% 学习率
learningrate = 0.005;
% 一些参数调整
if gpuDeviceCount>0
mydevice = 'gpu';
else
mydevice = 'cpu';
end
options = trainingOptions( 'adam', ...
'MaxEpochs',100, ...
'MiniBatchSize',miniBatchSize,...
'GradientThreshold',1, ...
'InitialLearnRate',learningrate, ...
'LearnRateSchedule','piecewise', ...
'LearnRateDropPeriod',20, ...
'LearnRateDropFactor',0.8, ...
'L2Regularization',1e-3,...
'Verbose',false, ...
'ExecutionEnvironment',mydevice,...
'Plots','training-progress');
%% 训练混合网络
% rng(0);
% 训练
CNNGRUnet = trainNetwork(XrTrain,YrTrain,layers,options);
————————————————
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
原文链接:https://blog.csdn.net/kjm13182345320/article/details/143222060
4
嗯,细心的你会发现:https://mbd.pub/o/slowtrain/work
博客专家认证,机器学习领域创作者,2023博客之星TOP50,主做机器学习和深度学习时序、回归、分类、聚类和降维等程序设计和案例分析。科研课题模型定制/横向项目模型仿真/职称学术论文辅导/模型程序讲解均可联系本人唯一QQ1153460737(其他均为盗版,注意甄别)
技术交流群:购买博主任意代码或分享博主博文到任意三方平台后即可添加博主QQ进群