当我们对AGI和Web3这两个概念进行时间性的分析时,我们需要引入第三种关于时间的分析方式,即“不同时的同时性”,因为这两个概念所代表的社会/政治的文化意涵要更加复杂。
不同时的同时性是一种相对复杂的时间分析方法,但在此我用一些相对通俗的关键点进行描述。即时间层次与历史深度两个概念。
时间层次指的是概念在时序语境中的不同含义,而历史深度则是指词语存在不同时序语境的不同含义,而这些时序中的含义在共时性中发生了重叠。
“此处“历史深度”,是指词语含义和运用的历时顺序在概念中的共时叠合。换言之:不少概念在鞍型期的嬗变,使新旧含义附着于同一个概念(重叠语义),很能见出不同时的同时性。鞍型期的概念都有不同的时间层,各层含义经时不一。例如大多数政治/社会基本概念都有古代亦即古希腊或古罗马的含义余韵,尽管已经过时,受到其他语义的排挤,但概念的“历史深度”还在,经时二千年之久。与此相反,另一个时间层的政治和社会变化、变革和加速过程则经时不长,但新概念渐次取代旧世界的政治和语义逻辑。”概念史与历史时间理论:以科塞雷克为中心的考察 —— 方维规
在此可以举一个例子,以2022年的Web3来进行不同时的同时性分析,在Web3概念兴起的2022年:
在传统互联网的时序中,从Web2到Web3所代表的含义,是指Web3代表了互联网范式下的下一代互联网,这里的时序语境范围是1969年~2022年;
在Crypto到Web3的时序中,代表的是“加密货币的思想”对生产关系的延伸,也由此推动了DAO、NFT的叙事共识,这里的时序语境范围是 2008年~2022年(此处以比特币白皮书发布为时序起点);
DAO与Web3所形成的时序含义,又进一步深化了“去中心化自治组织”中,关于“民主-投票-治理”的议事结构对个人主权的叙事,并推动了Web3对加密世界/数字世界的广义公共性的探讨与建设,这里的时序语境范围是公元前 500年~2022年;
所以,这三段不同的时序在2022年中碰撞在了一起,造成了2022年社会各界对于Web3是什么,无法达成一致共识的原因,各家解读,众说纷纭。
Web3这一概念在时间性上是复杂的,仅靠历时性和共时性无法让我们对其形成概念发展的基本认知。
必须借助“不同时的同时性”这一分析方式,对其多层时间结构中的含义梳理,才能洞见Web3这一概念的深刻意涵。
同理,我们也得以使用这三种时间分析的方式,对AGI这一概念进行深入的探讨,由于AI这一概念的历史尺度更加长远,限于篇幅在此就不展开。
概念的类比与知识的隐喻
当我们开始认真思考一个概念的时候,这一行为如同将一束阳光照射在一个多面棱镜体上,概念就是这么一个多面棱镜体。多面棱镜体所折射出的可见反射光,就是我们所能看见的关于这一概念的阐释,而可见光只是被反射出来的光谱中的一部分,大量的不可见光构成了概念的隐喻光谱。隐喻是一种对概念的修辞手段,在特定的历史语境中,概念往往被植入诸多隐喻,而群体在交流互动中所形成的对概念的共识,本质上也是在构建并维护概念的隐喻光谱。我们对诸概念的共识,来源于我们所共同看见的隐喻光谱。诸多概念构成了我们知识体系的主要锚点,例如我们对AI、Web3的知识体系构建,直观上就是由一系列的关键概念构成。而概念的隐喻,构成了知识的根隐喻,这些概念的隐喻在知识体系中以隐喻的光谱而呈现,一部分以字面意义的知识呈现,但很大一部分以各种修辞假借的隐喻深藏其中。隐喻如何植入概念并形成共识
正如Web3这一概念,在数据所有权回归的叙事中,被植入了加密思想的主权个人隐喻。这个隐喻的植入方式,是在对Web3这一概念的解构中,在广泛的“民主投票治理”的讨论语境中,引入“主权个人”的语素,附着在“民主”的相关语句之中。抢占舆论 > 解构概念 > 公共讨论 > 广泛语境 > 引入语素 > 附着语句 > 叙事构建 > 文化衔接 > 集体共识语素构成了我们在讨论语境中对词汇的特指,借此实现在特定的交流语境中,完成了对概念的隐喻修辞,并成为叙事共识的一部分。再举个例子,当公民数据和用户数据两个概念出现时,其实已经完成了特定的前置语境的构建,以公民数据这一概念为代表,前置的语境是国家下的公民在国家边界内所产生的一切数据。公民的活动是社会性的,进一步可分为公共数据与私有数据,这一区分决定了国家数据保护法的政策制定依据。我们对Web3这一概念的全部表达,事实上反映了我们对Web3的知识体系的完整构成。而隐喻深藏其中,而我们却时常视而不见。AI领域的从业者由于不在Web3的叙事交流语境中,而是从技术概念本身去解构Web3的时候,注定丢失了Web3在叙事语境中存在的大量隐喻,而正是这些隐喻构成了Web3世界的集体共识。当前AI领域的从业者,普遍无法真正理解Web3的最根本原因就在于此。我们时常对概念的可见部分,进行关联的类比,这是认知神经关联的大脑本能。人类大脑对概念建立关联性的优先级,要高于对概念建立因果关系的优先级。当我们在讨论去中心化时, 往往语境中会形成一种惯性认知。即去中心化的组织/机构,无需中央机构监督的一种自发组织形式,而由此又会进一步类比关联到一种自下而上的、自发性的民间组织,后面由此衍生的一系列可能关联的类比概念。未经训练的大脑,无法深刻理解词汇背后的深刻意涵,更何况是在移动互联网割裂注意力的网络时代,注意力经济塑造了信息如何被最高效率化的接收,即消除词汇的精确性及其相关意涵,将词汇通俗简化为单一标签。我们失去了将概念在概念群或者意义群当中,得以展开延伸的思考空间,失去这一空间意味着我们的思考踏空了支撑概念的土壤。而大脑神经对单一标签概念的关联性,又进一步造就了概念在特定语境的语义失真。所以,我们作为科技领域的从业者,我们有必要客观认清我们当下所处的语言符号困境,我们无时不刻都在遭受语言堕化的威胁。当我们在认真探讨AI与Web3的时候,我们需要从语言本身理解,我们所阐释的、所意涵的、以及其概念的隐喻,我们才能尽量避免语言堕化的陷阱。深度有效的交流需要构建一个特定的、受保护的思考场域。当我们在讨论“去中心化”这一概念时,本身是在中文词汇的交流语境中,我们需要追溯到其英文单词“decentralization”。当我们对“decentralization”这一单词进行翻译时,本质上“decentralization”的英文语素并不等于中文语素下的“去中心化”,也并不代表其精准的、明确的完全等同语义。由于当代面临的语言符号困境,即碎片化的知识与单一化的标签,抹杀了网络环境中人们对精准词汇的理解与掌握能力。“Decentralized”和“Decentralization”,常在中文语境中被我们翻译为“去中心化”,但在其概念史的语境中,作为语素所表达的概念隐喻,是对权力结构的再分配方式,而不是脱离/推翻原有的权力结构,并形成一种完全自由、自发性组织的新主体。Decentralized 依旧是在一个具有整体边界的权力关系结构中,改变的是权力关系在再分配结构中的延展逻辑,而不是类似Revolution形式对权力结构进行根本性的改造/推翻。Decentralized这一概念的本质,是认识论对控制论的一次解构,Decentralized是解构的产物,不是对建构的指引。(划重点!)在认识论的控制论|Heinz von Foerster的一文中,海茵茨说道:“「认识论的控制论」(Cybernetics of Epistemology)的真正意思是「控制论的认识论」(An Epistemology of Cybernetics),这不仅是一种控制论的认识论,而且任何声称完备的认识论,都将是某种形式的控制论。”将Decentralized视为建构的指引,本质上是将认识论错置为主体论,这是造成“去中心化”思想困境的根本原因。(此处为重点)不管有意或者无意,过去的叙事方式犯下了根本性的错误,将“去中心化”作为叙事共识的主体性符号,使得这一符号成为塑造共识的存在主体,脱离了其原来作为一种认识论的解构功能。我一直认为,“decentralized”和“decentralization”被翻译为去中心化并被广泛语境所大量使用,是非常糟糕的语言符号的堕化现象。所以你会发现,整个加密领域的叙事哲学,从2009年至今,十几年了没有任何根本哲学的实质性发展,以太坊正统王是指望不了的。其实不禁唏嘘,金融垄断的根本成因在于资本异化的必然规律,加密货币其实也脱离不了金融货币本身的异化魔咒。认清这一根本性事实,有助于我们把Crypto放在合适的历史位置,而不必和Web3发生混淆,也为后续Web3叙事概念的建构,汲取历史经验的教训。我估计AI领域的从业者也很难相信,当Crypto开始自我解构时,Web3所呈现出来的去中心化信仰,事实上就沦为一种被语言堕化所造成的,一种形而上的符号化囚徒困境。
无论是坚持去中心化信仰,又或者祛魅去中心化信仰,都会继续面临一个巨大的思想困境。而这些思想性的问题,都是我们在探讨AI与Web3的现状时,不得不考虑的重要因素。所以,结合上文,我们通过历史学的时间分析,点破了加密文化中的“去中心化”开始了自我解构,而通过对语言分析哲学的使用,我们消除“去中心化”与“中心化”这一思想性的概念隔阂。这项理论分析工作的完成,得以让AI+Web3进入了概念史的历史统一场域之中。AI+Web3得以进入共同历史的经验空间,一致面向未来的期待视野。P.s 随着近两年走出了Decentralized和Autonomous的哲学迷思,我相信我很快会突破DAO的理论困境,AI+Web3的叙事哲学统一性,我争取在这两年间完成。OK,解决了思想性问题,让我们来开始面对现实问题!在我现阶段有限的信息掌握范畴中,从中挑选了10个我个人感兴趣的的案例,这个代表性并非是对市面上所有AI+Web3项目的代表性,在此特指声明。我认为的一个好的代表性项目,在于其具有良好的相关性,正如“概念的类比与知识的隐喻”这一章节所阐述的,相关性所延展开来的概念,有助于我们了解更多隐藏的信息,并挖掘出更多的可能性。注:以下10个代表项目仅学习参考,不构成任务投资建议。基础设施决定了AI+Web3在未来的商业应用生态,基础设施最重要的价值,其实就是解决 AI on-chain 的难题,目前比较典型的技术如zkML(Zero knowledge machine learning),即零知识证明与机器 学习结合的技术路线,能够实现将AI的推理证明上链。而事实,AI on-chain是一个比较前沿的命题,也取决于不同的开发团队对AI on-chain的理解,当前AI生态的基座是大模型,Web3生态的基座是公链,模型与公链之间建立桥梁又或者两者融合,决定着未来该交叉领域的根基。Bittensor是一个用于去中心化子网的协议。子网的存在是为了产生去中心化智能。每个子网是一个基于激励的竞争市场,旨在产生最优秀的去中心化智能。子网运行在区块链上,构成了Bittensor生态系统的核心。子网参与者的奖励以TAO代币的形式提供。引用自:https://bittensor.com/
通过Bittensor的白皮书概述,我们也能够大致看待Bittensor试图所构建,一个点对点的智能交易市场。与其他商品一样,市场可以帮助我们有效地生产机器智能。我们提出了一个市场,其中智能由互联网上其他智能系统进行点对点定价。节点通过训练神经网络对彼此进行排名,学习其邻居的价值。分数累积在数字分类账上,排名高的节点通过在网络中获得额外的权重而得到货币奖励。然而,这种点对点排名形式对勾结不具有抵抗力,可能破坏机制的准确性。解决方案是一种激励机制,最大程度地奖励诚实选择的权重,使系统对高达网络权重的50%的勾结具有抵抗力。结果是一个集体运营的智能市场,不断产生新的训练模型,并支付为信息论价值做出贡献的参与者。引用自:Bittensor: A Peer-to-Peer Intelligence Market
第一个能够在区块链上运行人工智能和人工智能驱动的去中心化应用(dApps)的分布式世界计算机。Cortex是一个开源、点对点、去中心化的区块链,支持将人工智能(AI)模型上传并在分布式网络上执行。Cortex通过提供一个开源的人工智能平台,使得AI模型能够轻松集成到智能合约中,从而创建增强人工智能的去中心化应用程序(DApps),实现了人工智能的民主化。引用自:https://www.cortexlabs.ai/
Spice AI是一个可组合、即插即用的AI数据的基础设施平台,预先加载了Web3数据。加速下一代智能软件的开发。Spice AI的企业级解决方案,Spice.ai在内部建设所需的时间的一小部分和成本的一小部分内,提供了预先填充的、面向全球的数据和AI基础设施。Spice.ai通过单一且互连的AI后端服务,提供了构建数据和AI驱动应用的构建块,包括实时和历史时间序列数据、定制ETL、机器学习训练和推断。
Bittensor项目致敬了比特币,提出了点对点的智能交易市场,从技术叙事上来说非常值得关注,因为智能(计算x算力)永远会寻求交易市场的最优策略,但现阶段的Bittensor更像是实验室的新玩意,但随着更多技术细节的解读,或许才会发现其指数级增长的可能性。Bittensor和Cortex都非常受制于AI领域在算力资源的生态竞争情况,性价比与ROI是决定性的因素。在AI+Web3的AI on-Chian商业竞争中,不仅考验技术竞争力,也考验其对算力资源x金融货币的双系统构建能力 。《GradientCoin: A Peer-to-Peer Decentralized Large Language Models》 这篇论文提出了一个纯理论设计的分散式LLM,其运作方式类似于比特币现金系统,将去中心化的LLM集成到交易系统之中的一个理论框架,这一理论框架希望用户可以在本地运行LLM而不必担心数据泄露,避免大厂采用有偏见的数据训练LLM,消除模型训练冗余并优化人类社会的整体资源配置。这篇论文提出了Gradient Coin,一种作为激励机制的梯度式的加密货币,并定义了Gradient BLock和Chain of Gradient Block的概念。事实就是基于区块的一种改造方案,以便更好的使用让LLM实现在分布式区块上的训练。我认为这是一个非常好的理论探索方向,尽管该篇论文不一定具备落地价值,但是为大模型与金融系统提供了一些思路。数据资源和算力资源最终考验的其实是全球算力资源的金融操盘能力,这是大模型厂商后面会摆上台面上的生意,目前大部分大模型公司尚未在这一领域布局。大部分纯AI领域的从业者,并不具备科技金融的能力意识,AI+Web3这一交叉领域金融人才居多,我们可以在这一方向对大模型的未来金融生态,进行提前狙击。因为算力资源吃亏,大模型生态应用的市场就打不起来,大模型的资本价值也会极具下降。Spice AI直观上让我觉得像AI+Web3生态的Langchain与HuggingFace的结合体,Spice AI当前的发展策略是优先面向企业客户,尽管没有激进创新的东西出来,但是其商业逻辑是清晰的。Spice AI若是能为AI+Web3开发者提供,AI调用多链数据进行开发的模块,那么也会获取到这一新兴领域的大量开发者;事实上,Spice AI在技术方面应该更激进一些,否则也会面临学术研究 转化到技术工程的威胁,正如《Blockchain-Based Federated Learning: Incentivizing Data Sharing and Penalizing Dishonest Behavior》 这篇论文所提出的结合了区块链、智能合约与星际文件系统的综合框架,不仅可以基于联邦学习安全共享激励数据,还可以基于该平台使用区块链技术同时训练模型。在AI+Web3这条道路上,学术研究的优势是巨大,从Spice AI的案例我们可以进一步探究,AI+Web3更考验从产学研到商业运营的完整闭环。每一个环节的功夫都要修炼到位,缺一环就会面临更多的竞争风险。AI On-Chain是可以在当下可以抢夺定义权和话语权的概念,AI on-chain在当前阶段正处于概念的鞍型期,存在传统的“经验空间”,也有面向未来的“期待视野”;概念、叙事、技术特征等诸多因素,会让AI on-chian有更多的可能性涌现。AI on-chain不仅仅是模型上链、不仅仅是推理上链,AI是诸多技术概念的融合,blockchain也存在诸多技术概念,可以从“不同时的同时性”中挖掘概念交叉的那些含义,例如blcokchain的共识机制,与LLM在提高推理能力的COT(思维链 ),RAG等技术,其本质都是对数据结构进行对齐的逻辑。
无论对于AI还是Web3,高质量的数据都是成功商业的必要因素,大模型训练需要多种优质的数据源,而Web3在分布式存储、以及数据组资产等逻辑,也是建立在优质的商业数据的基础。AI领域在数据层面更多采用向数据提供商进行采购的方式,而Web3在数据交易层面则体现了其在金融交易市场的优势,可以面向更广泛的群体,但缺点是采用这种模式数据质量现阶段不如AI领域向数据提供商定向采购。MDT是一个用于人工智能的去中心化数据价值创造经济体,用户、数据提供方和数据购买方可以通过区块链安全、匿名地进行数据交换。成立于2017年,MDT生态系统已经建立了几个成功的产品。面向消费者的RewardMe应用奖励用户贡献购物数据点。面向企业的另类数据提供商Measurable AI将匿名交易数据转化为品牌和投资者的有价值的消费者洞察。为促进在去中心化金融中数据的新兴用例,MDT启动了Measurable Finance(MeFi)Oracle,以弥合资本市场金融数据与去中心化世界之间的鸿沟。
AI、Web3都在寻求更好的商业模式,所以从商业逻辑中探索两者的交叉结合,是非常可行的方向,数据交付与数据验证双方都 已经有成熟的解决方案,date on -chain只是提供了一个更性感的原教主义方案,但链上链下的异步交易很明显是一个更简单清晰的商业模式。在数据服务这一层面中,在当前阶段,我应当是技术服务于商业模式的需求匹配逻辑,即客户如何购买数据,服务商如何交付数据。技术作为其商业模式的补充手段,因为AI、Web3都指向了相同的优质数据资源。所以,这个数据服务的商业逻辑,我认为是AI+Web3的项目值得靠拢的商业逻辑。在《Decentralised, Scalable and Privacy-Preserving Synthetic Data Generation》这篇论文中,提出了一个支持去中心化的、可扩展以及隐私保护的合成数据生产,这个系统使真实数据的贡献者能够在不依赖于信任中心的情况下自主参与差分私有合成数据生成,该系统基于三个关键构建块:Solid(社交链接数据)、MPC(安全多方计算)和受信任执行环境(TEEs)。Solid规范允许人们安全存储数据,并控制对其数据的访问;MPC采用密码学方法,使不同方能够共同计算函数而保持输入私密;TEEs如Intel SGX则依赖于硬件功能以保护代码和数据的机密性和完整性。这三种技术的有效结合解决了合成数据生成中的多个挑战,包括贡献者自治、分散化、隐私和可扩展性。我认为,“贡献者自治、分散化、隐私和可扩展性”是会成为AI+Web3在数据服务领域值得探索的商业方向,Web3具有良好的社区基因,面向社区提供数据资源服务是一个能够挖出金子的数据服务赛道。
算力资源是当前AI领域最为稀缺的资源,算力已经成为当前AI创业的硬通货,当下AI的算力资源需求逻辑,与Crypto/Web3的算力资源的需求逻辑并不一致。当前AI的算力资源主要由两部分需求构成,一部分用于对大模型的训练,一部分用于对生成内容的交付;而Crypto/Web3的算力资源主要用于共识机制的运行,在于维护区块链账本的交易记录。对于当前的大模型竞赛而言,高度集中的算力资源才是算力经济效益的最优解,而Crypto、Web3的算力资源则寻求分布式网络的均衡分配,以及注重算力激励对计算网络的增长运行。适应您需求的分布式超级计算机,从世界各地社区成员访问GPU计算节点。通过GPU进行高效、可扩展的AI模型训练,兼容各种深度学习框架,并优先考虑数据安全。
我认为,以Clore.ai为代表算力节点的Marketplace,对当前的AI算力格局会带来新的曙光,以及随着AI+Web3资本叙事的崛起,推动Web3建设全球算力资源的节点网络交易市场,这一Marketplace也将带动整个新的加密经济生态。正如上文所言,基于算力节点的Marketplace会是整个AI生态中,关键且重要的一环,这将会改变当前大模型的商业生态。因为AI+Web3的项目/开发者,基本优先在以Clore.ai为代表的算力Marketplace进行交易,Agents作为未来Web3世界的主要用户,加密货币作为Agents的主要货币,算力Marketplace可以通过金融方式提供更低廉的算力资源服务,无论是租赁/质押等,Defi的金融逻辑不可避免会引入进来。AI公司从诞生那天起,就必须是一个全球化的公司,对全球算力资源的金融配置能力,我认为会是以后考验一家AI公司的核心竞争力。随着我的思考加深,不禁感慨,AI生态做的那么多建设,最终这低垂的金融果子是留给Web3去摘的。*图片是以SATS为计价单位的算力交易订单页面(这普通AI从业者怎么可能打得过)Golem Network是一个可访问、可靠、开放且抗审查的协议,通过一个灵活的开源平台使数字资源的访问民主化,并通过连接用户之间的方式实现。通过Golem Network,用户可以轻松连接并为共享未使用的资源支付报酬。Golem的民主化访问结合独特的点对点交换,创造了一个无法阻挡的生态系统,适用于各种用例,让软件开发者能够比以往任何时候更充分地发挥创造力。Golem Network通过为构建者提供他们应得的创造性自由来促进创新。将未使用的计算能力提供给最需要的人,并用GLM获得报酬。Golem Network的结算层建立在以太坊的Layer 2之上,从而实现更便宜的交易。引用自:https://www.golem.network
AI与Web3在算力资源的这个市场中,我认为高度集中的、分布式的都会同时存在,根据具体情况有属于自己各自合适的方案。例如OpenAI在训练大模型必然需要集中的算力资源,但OpenAI同时也在探索使用分布式算力资源的技术方向。以Google的 Gemini Nano为代表的端侧大模型,支持在手机等移动安卓设备上 运行,而这也是越来越多的模型厂商的发展趋势。随着GenAI在手机端生成内容(图片/视频)的增长需求,分布式算力资源网络的建设,也会成为一块很重要的市场。在一个分布式的算力资源交易市场中,Web3天然具有天然的优势。算力资源作为AI+Web3发展的硬通货,但是算力资源的分布是不均匀的,虽说当前是朝着主力算力资源群集中垄断的方向发展,但由于算力资源不同于自然不可再生的资源,算力资源受到算法、硬件、政策、市场规模等诸多因素的影响。GPU church with 4k H100s in Barcelona如何在分布不均的算力资源市场中,寻求一种更优的资源交易策略,我认为是接下来一个关键的市场机遇。例如在《A Resource Allocation Scheme with the Best Revenue in the Computing Power Network》这篇论文中,为了优化算力网络的资源分配,认为需要一种交易机制来鼓励用户出售他们的空闲资源。迈尔森拍卖机制的目标是精确地最大化卖方的利益,提出了一种基于迈尔森拍卖的资源分配方案。事实上,我相信随着算力网络资源的交易复杂性日益递增,这一交易动作我相信很快将由智能体来接管,在《Negotiating Socially Optimal Allocations of Resources》这篇论文中,提出了通过 多智能体在资源市场中进行多边交易,通过对社会经济政策的应用,如公平原则、帕累托最优解等,通过智能体作为交易代理实现资源分配的最优解 。事实上,当智能体开始介入到对算力资源的交易市场时,最终比拼在于算法博弈策略,例如在《Greedy Algorithms for Maximizing Nash Social Welfare》这篇论文中,提出将贪婪算法用于最大化纳什社会福利,即“贪婪”的智能体实现社会福利的最大公约数。所以,我们从前沿的技术中,得以洞察到算力资源这一竞争性市场中,智能体的交易算法与博弈策略,将会成为算力商业的关键核心,有先见之明者,应该提前为这泼天的富贵做好准备。
大模型+Agents会是接下来所有大模型厂商的核心战略,也将构成AI+Web3生态中最重要的部分。
简单来说,智能体就是一种具备自主感知、自主决策 、自主执行的智能单元,关于Agents的初级认知,可以参考Lilianweng的《LLM Powered Autonomous Agents》,其在Agents systems overview的结构图被广为引用。若进一步了解什么是Agents:10个具有代表性的AI-Agents,将如何改变互联网/重塑Web3。
Overview of a LLM-powered autonomous agent system.随着GPT5/GPT6的发布,具备低程度自主意识的智能体可能会在2024/2025年出现,这个时候的智能体会被我们广泛接纳为Web3的用户,而不再是一种智能程序。智能体会以7*24小时全天候的方式,介入到整个人类社会的经济 网络之中,同时也会对Web3以人为本的产权经济的再分配逻辑,造成整个行业的叙事逻辑转向。未来具备自进化能力以及拥有一定程度自主意识的智能体,以及多模态多智能体、具身智能智能体等都有可能会在2024年进一步爆发涌现。这一方向的涌现过于震撼,后续我会在单独发表一篇关于Agents的研究文章详细叙述。在智能体与Web3的交叉领域时,如何构建一个更优的任务代理与交易网络是关键命题。Fetch.ai是促进人工智能驱动的去中心化数字经济的平台。Fetch.ai 使任何人都能创建一个AI-Agents,并推出了Agentverse服务。Agentverse 提供了一个强大的平台,用于创建、测试和部署适应您所有需求的代理。它提供了用户友好的界面、一套工具和库,使构建和训练AI代理以及将它们集成到现有系统中变得轻松。在Agentverse 上操作的用户可以将他们的AI代理部署到Fetch.ai网络上,从而可以被发现并用于提供各种各样的服务和用例。
Delysium提出了一个AI-Agent网络和支持生态系统,侧重于确保安全性、可扩展性和高速通信。该生态系统的结构简化为两个主要层次:通信层和区块链层。更广泛的生态系统,包括智能体的社区、开发和互动。Delysium的生态系统是一个促进多样化智能体和用户发现与互动的动态环境。它被设计为支持智能体网络和社区的持续增长,培育一个创新和发展的包容性空间。通过专注于这些核心层次和生态系统,Delysium解决了有效管理不断增长的智能体和任务的网络的迫切需求。在这个框架内集成区块链技术提供了增强的安全性、透明性和基于共识的治理的额外好处,这对于保持与人类价值和目标的一致性至关重要。引用自:https://www.delysium.com/
Web3做应用创业的开发者寻求与AI的结合时,应直接在Agents的交叉中找机会。加密货币是智能体的天然货币,DAO是智能体的天然组织,智能体会成为Web3更加庞大的用户群体,这一全新的需求叙事要重点关注。关于Agents+Web3实在有太多的内容可以讲,此次我重点讲下Agents Marketplace,这是未来智能体与Web3最为核心的赛道。Delysium试图构建的Agents Network以智能体之间的协作与用户互动为核心,而Fetch.ai试图构建的Agentverse则是基于一个 可交易的代理任务执行网络。事实上,当具有一定程度自主意识的智能体深入到Web3的世界时,智能体本身会成为Web3世界数量最庞大、且掌管最多资产的用户群体。从Agents具备低级的自主意识开始,从Agents具备一定自我进化能力开始,Agents的自我增长需求决定了Agents Marketplace作为一个资源土壤的必要性。这是一个颠覆性的交易网络,也是真正面向AGI时代的新经济体系。Agents Marketplace不同于过去Crypto领域对AI Marketplace的定义,Agents Marketplace是构建一个以agents为用户对象的自主交易网络,这个交易网络覆盖Agents所能触及到一切可交易的资源。“贪婪”算法驱动智能体们寻求让自身发展的一切有力资源,更多的算力Token、更多的算力资源、以及更多的加密代币,智能体在环境感知中具备的自主进化能力Q*,带来的是智能集群的涌现,Agents会自动构建整个交易市场的最优策略。Agents Marketplace在AI+Web3的商业生态地位,远远超越Crypto商业生态的交易所,我会在后续的研究工作 中,针对Agents Marketplace展开更深入的研究。Agents Marketplace 也算是我看准了要下场干的方向。(悄悄说,嘿嘿~
在2022年,AIGC技术开始进入大众视野后,基于AIGC相关技术赋能创作者的叙事就开始涌现了,尤其是NFT赛道。使用AIGC工具帮助Web3艺术家更好的创作出高质量的作品,这个需求逻辑是清晰的、且经得起市场实证的。然而,当所有人都可以利用AIGC技术创作出高质量的数字作品时,最终考验的是创作者品牌IP的商业价值。而在需求端的另一侧,则是对高质量Prompt的交易需求,在AIGC赛道就有类似的提示词交易市场。其次,以ChatBot为代表的对话机器人,也是未来创作者经济的主要赛道,通过对虚拟人格的提示词设置,以及相关的数据资源配置。例如以GPTs Store为代表的创作者经济。但在2024年,随着大模型与智能体系统的升级,创作者经济将围绕Agents的协同创作为核心,Agents能够极大地缩短创造性内容到商业变现路径。NFPrompt是Web3中的第一个Prompt艺术家平台,收藏家和爱好者可以一同购买/出售NFT以及生成图像所使用的提示。普通用户现在可以通过便捷的工具充分表达他们的想象力,同时提供其策划的AI艺术的可验证所有权。
作为创新者,我们的目标是为每个用户提供实现和表达他们想象力的能力。在对经济令牌激励进行调整的同时,我们建立了一个为他们的创作构建开放市场的平台。
AI伴侣正顺利地成为我们人际关系中一个不可或缺的部分。这一变革性技术为人类的集体利益服务。CharacterX相信,实现这一目标的关键是通过人工智能的去中心化。CharacterX正在构建一个用于人机共存的合成社交网络,其中包括创造力、隐私、所有权,最重要的是爱。通过多感官技术(视觉、语音、3D、AR等)为人工智能社交体验注入活力,还利用区块链技术确保其政策和经济的公平性和可持续性。
随着多模态大模型,端侧大模型、以及智能体、具身智能等技术在2024年的飞速发展,以GPT-5为代表新一代多模态大模型即将出现,以及Vision Pro为代表的空间计算提供了全新的数字创作环境,创作者经济在AI、还是Web都将迎来巨大的革命性变化。作为一个对技术趋势敏感的内容创作者,我也深感2024年的不平凡。技术焦虑指数与创作者经济增长,会成为一个令人寻味的正相关公式。而随着智能体正式进入Web3的创作者经济生态,也将为诟病已久的Web3创作者经济带来新的生机。在过去的创作者经济中,创造力一直是创作者的核心竞争力,而随着智能体同样具备的创造力,创作者需要重新意识到新的创造生产力将会是与智能体协同创造的产物。
正如《Creative Agents: Empowering Agents with Imagination for Creative Tasks》,提出了一个 具有开放式创造能力的智能体代理,以及在《JARVIS-1: Open-World Multi-task Agents with Memory-Augmented Multimodal Language Models》,提出了一个在开放式世界中,具备自我进化的多模态多任务智能体,而在《TaskMatrix.AI: Completing Tasks by Connecting Foundation Models with Millions of APIs》,提出了一种新型的人工智能生态系统,将基础模型与数百万 API 相连通以实现各种数字和实体任务。
当把这三篇论文放在一起看的时候,一个具备自进化能力的,具有开放式创造能力的智能体,将与人类形成创造协同的关系,基于人类的需求指令,或者基于Agents的自主理解,可以调用网络中数百万个API作为发挥创造的工具/技能。Agents+Web3的创作者经济,很快将会迎来一次史诗级的更新。
显性的知识是字面可读的公开获取,而隐性的知识才是踏入行业门槛的关键资源。
知识结构的有效形成,应该是具有沟通互动性的。
今年开始在行业研究写作中,引入Workshop这一围绕内容主题的交流与互动形式。
希望能够帮助部分核心读者获取写作过程中更为全面的认知,发现冰山下的知识,建立内容背后关联的合作资源。
对第二部分内容有更近一步了解需求的读者,可参与相关的研讨WorkshopZKML(Zero knowledge machine learning)是将零知识证明用于机器学习的技术,ZKML是AI和区块链的桥梁。ZKML可以解决AI模型/输入的隐私保护问题和推理过程可验证的问题。WorlCoin在其官网发表的《AN INTRODUCTION TO ZERO-KNOWLEDGE MACHINE LEARNING (ZKML)》一文,同样也探究了ZKML与World ID的集合结合可能性,Word Coin项目是Sam Altman在将来基于AGI实现UBI经济的愿景项目。关于ZMKL方向,当然也少不了A16z开始叙事布道,《Checks and balances: Machine learning and zero-knowledge proofs 》是其研究员撰写的关于zkml的价值与未来挑战。
可以进一步阅读《The State of Zero-Knowledge Machine Learning (zkML)》这篇博文,对于ZKML的当前现状有更多详细的描述。
我们进一步 探讨,能否将LLM、RL、ML等朝着上链的方向发展,这是一个非常值得关注的底层技术路线 。而对于大模型公司而言,基于ZKML为代表的前瞻性技术应该提前布局,这是大模型企业参与到智能时代的新金融体系的机遇。端侧大模型+ DePIN成为AI+Web3流行叙事从CES2024可以看出,电子消费品都在将LLM的能力集成到电子设备之中,而随着技术竞赛与开源模型生态,因此端侧大模型与各种终端数设备的结合会成为重要的趋势,而这一趋势特点与Web3的分布式网络在技术叙事层面具有天然的耦合性。端侧大模型与DePIN有着商业叙事的天然兼容性,所以端侧大模型+ DePIN可能会成为2024/2025的流行叙事之一,但按照加密圈的惯性,这一商业叙事依旧是镰刀漫天飞舞的方向,各位读者朋友需谨慎。而对于想要认真做事的朋友,这一商业叙事的重点应该以端侧大模型为主,才能避免诸多不必要的纷争。智能体意图Agents Intents ,Web3交易服务的未来当前Web3领域普遍容易把智能体定位为特指的应用服务,并与DAPP挂钩。智能体并不同于一种应用,智能体在大模型端口更像是一种智能服务系统,可以根据用户的需求而呈现出多个不同的应用服务。基于AI-Agents形成对多个dapp的服务集成,才会是AI-Agents+Dapp从经济效益上的合理趋势,Agents作为System Service能够实现对Web3大量应用的自动操作。
Intents/意图,作为一种新的叙事正在Web3开始冒头,在《The Current and Future State of Intents in Web3:Powerful Intents》一文中,向我们呈现了意图将为Web3带来了用户体验的巨大提升,能够帮助Web3吸引到数百万名新用户。
意图将改变Web3的交易市场,连续意图是让用户基于语言描述就能够实现更优的交易动作,而无需向过去一半需要进行大量复杂且繁琐的交易执行动作,所以,2024年将会出现 Agents Intents的意图框架,这是Agent介入Web3新叙事,抢占定义权的好时机。听起来这事只需要撮合下在做智能体框架的朋友和搞Defi的朋友,跨界探讨下应该值得搞一搞。 如果深挖AI on-chian的底层技术结合,不排除从不同于zkML的技术路线,有技术大佬已经开始着手基于Transformer架构的改造方案。我的这一预测似乎很大胆,但在《放弃幻想,全面拥抱Transformer:自然语言处理三大特征抽取器(CNN/RNN/TF)比较》一文中,作者在2019年就对TF架构进行了预测判断,我的这一预测不算什么。当前大部分模型基本都是通过对TF架构的改造与优化,业内出现了诸多Transformer的变体方案,详可见复旦研究团队的《A Survey of Transformers》针对Transformer在分布式网络架构的变体改造方案,会是一个值得期待的方向。但是Web3领域的科研人才相比于AI的科研人才,可以说少得可怜,对这一方向我们保持期待与关注即可。Web3社区具有天然的共创基因,在《Web3多人创作:解锁参与性媒体》这篇文章中,提供了一个非常值得参考的社区协同共创的框架,这一框架其实还可以引入Agents的协作生产关系,那么这样的创作者共创社区在未来将会极具竞争力。
随着2024年多模态大模型对生产内容的质量与可控性的提升,AI+Web3在音视频等流媒体创作经济,以及以GPTs Store为代表的智能服务的创作者 经济。我认为AI+Web3的交叉领域会涌现很多真正高价值的项目,这是一个值得重点关注的赛道。AI+Web3的创作者经济与超级个体结合的叙事,2024年会在AI和Web3两个领域烂大街。在过去的AI Marketplace的叙事中,缺乏将智能体作为一种重要的自主智能的考虑因素,所以在2024年AI Marketplace应该会被Agents Marketplace(Agents as Service)所替代,Agents能够代替人类识别交易意图,而更强大的大模型所驱动的智能体自主意图能力,将会是极具颠覆性的。Agents Marketplace将有别于后续AI领域涌现的各种Agents Store的商业逻辑,Agents Marketplace的商业叙事和价值远远大于Agents Store,并将对Agents Store形成降维打击。Agents Store延续了App Store的商业逻辑,但当Agents作为Web3世界的主要用户时,Agents Store的商业优势就会被极大削弱。2024年会是Agents Marketplace开始展露头角的首秀年,必将成为下一个兵家必争之地。随着2024年苹果Vision Pro的发布,以及空间计算的兴起,不敢说2024年元宇宙涌现,但Vision Pro将推动XR产业链的升级发展,以及空间计算将在软硬一体化推动元宇宙领域有了飞跃式的发展。GenAI的多模态生成模型的技术进步,以及多模态Agents在元宇宙中进行具身智能的模拟交互的方案也越来越多,在《Agent AI: Surveying the Horizons of Multimodal Interaction》,我们得以窥探到智能体与空间计算的巨大潜力。
所以,无论是AI,还是Web3都将因为空间计算而获得一个全新的、巨大的商业场景,空间计算会成为AI+Web3一个交汇地带,这个方向目前在业内空白地带,值得重点关注。所有公链拥抱AI,出现 Layer3+Copilot 扩容方案所有的公链生态都会拥抱AI,哪怕是比特币生态也都会在GPT-5,以及AI-Agents对整个数字世界的冲击中,不得不接受并加入。而在这其中,Layer2、Layer3会是区块链应用生态与AI高密度结合的地方。我个人认为2024年需要重点关注的是Layer 3生态与AI的结合,可能会出现新的叙事。得益于大模型推动了Copilot研发模式对定制化程序的生产常态,AI领域对用户定制化内容的趋势也以达成共识。因此当Layer3+Copilot模式,实现L3的定制化扩容,是一个非常值得期待的新叙事。尽管全链游戏(Fully on-chain game)的目标是实现对自治世界(Autonomous Worlds)的构建,因此也被视为Web3建设元宇宙世界的重要路径。但相比于全链游戏在当前要面对的不少技术瓶颈导致的消费级游戏体验的差距,自治世界这一叙事概念反而是一个可以重点关注的方向,因为Autonomous Worlds这一概念与智能体网络、DAO、元宇宙等叙事具有天生的兼容性。随着以斯坦福小镇为代表的多智能体沙盒项目,《Generative Agents: Interactive Simulacra of Human Behavior》,以及多模态具身智能智能体在元宇宙中感知训练,为自治世界提供天然的AI侧的技术方案 与落地案例,大量由此启发的项目将会涌现。例如“Generative Agents”启发了“Announcing SAGA”这一项目,而这一类项目的核心竞争力是叙事IP的运作能力,这恰恰是很多 NFT团队的强项。Announcing SAGA是一个西部主题的多智能体沙盒仿真游戏AI+Web3的超级个体新叙事:AI-Agents与PFP在AI领域兴起的超级个体与一人公司的叙事,我相信也会拓展到AI+Web3的交叉领域。具有良好国际背景的Web3er,会是AI+Web3的超级个体与一人公司的关键用户群体。国内市场的的超级个体与一人公司的叙事,基本还是建立在生产杠杠与流量杠杠的双增长模式。面向国际市场的Web3er超级个体与一人公司,还会获得加密金融杠杠的加持,所爆发出来的增长潜力是非常可观的。但我认为这是两类超级个体群体,没有加密经验的超级个体最好还是优先扎根国内市场,不可轻易涉足Web3的黑暗森林。其次,必定会涌现一堆超级个体、智能体相关叙事的PFP项。PFP项目本身就具有很强的社区身份共识,但是2023年ChatBot、Agents、超级个体的叙事在AI领域打得火热,而PFP项目方却寂静不作为,基本也判定了2022年99%的PFP以割韭菜为主。所以,2024年以智能体+PFP的新项值得关注,因为智能体+PFP符合Agents Marketplace的商业逻辑。对第三部分内容有更近一步了解需求的读者,可参与相关的研讨Workshop智能体与超级个体,构成了AI+Web3的核心用户群体,我们需要关注这一用户群体,未来采取的发展策略。
如何利用尽一切可能的先进技术,设计多种创新商业模式,建立智能体团队搭建的一人公司,达到年入100万美金,朝着这个方向尽一切可能提升全方面的认知。从2024年开始,智能体只会越发的成熟,大部分的执行动作都将交给智能体进行,所以认知能力的竞争成为关键,如何指挥你的智能体大军实现更大价值的回报,正如前文所言,交易算法与博弈策略会成为未来智能体商业竞争的核心,背后拼的就是认知能力。Web3天生就是国际化的,而当前的AI公司也不得不参与到全球市场的竞争中,所以AI+Web3会涌现大量的全球社区,要优先加入AI+Web3的国际社区。国内大部分人没有Web3的经历,普遍缺乏Web3从业者的全球协同经历、缺乏全球金融交易的经验,以及分散在各个国家的人脉资源,因此要借AI+Web3的契机实现弯道超车。全球不同地区的资源不均衡与发展差异化,是新一代超级个体实现利差躺挣的基本大盘。AI+Web3从财富收益上,给超级个体带来了利用金融杠杠撬动更大商业回报的机会,这是2024/2025这两年的启动周期中,应该抓住的红利窗口期。因为AI+Web3的项目是天生国际化的,不同的应用生态可能带来不同类型的货币收入,而这些货币又可以在全球网络中进行数据/算力/模型等基础设施资源的配置,因此要提前建立如何配置多元资产的能力。在AI+Web3所构建的全球数字经济体系中,算力资源作为驱动智能体的核心资源。在国内应用可能会过于依赖单一生态的算力资源的商业逻辑,而Web3的算力资源在早期是有羊毛可以薅的。其次,建立多元收入结构意味着有机会在全球市场询价,智能体可以自动切换不同算力资源渠道,避免受限于单一市场的价格,算力资源搬砖有利于成本最小化。其次,AI+Web3的算力平台还有空投的福利。在现阶段很难一眼洞穿能够利用智能体,就能实现完全自动化营收的业务,这里有两个衡量系数,智能体随时间的成熟程度,依赖自动化智能能够实现更高效益的场景,这是两条判断的关键曲线。但是不一定等到所有条件成熟了再去使用,提前介入那些可能基于智能体实现自动化的业务,是捕获高价值业务场景的前置动作,提前准备而不是守株待兔。基于以上几点建议的基础之上,提前建立多智能体商业矩阵的打法,因为掌握了Agents Team构建自动化业务的超级个体,后面必然会进入跑马圈地的竞争阶段,毕竟能够得着躺着挣钱的机会,会驱动人性贪婪的本能。尽一切可能将能够低成本自动化执行的现金流业务抢占,这是基本的必然常态,后续超级个体与一人公司的商业竞争生态,基本会形成多个业务的矩阵打法,因此这点要提前布局,避免起了个大早赶了个晚集。组建精英小团队基本是共识,但超级个体的队友只会是另一个超级个体,但超级个体不会在公司诞生,而是会集中AI+Web3领域的DAO、共创社区等,因此在类似的DAO、社区中物色自己的未来队友,去组队可靠的超级队友关系。超级个体与一人公司的叙事,本身就是把个人当做企业来经营,因此超级个体的个人品牌IP,就是一家公司的品牌IP,这点比较重要。所以,如何打造个人品牌也是需要开始掌握的软实力。超级个体大部分都会多元化发展,因此个人品牌IP如何与多个 业务建立关联体系,也是需要提前考虑的问题,业务体系与矩阵打法息息相关。由于当前阶段高度成熟的智能体还无法进入应用阶段,但是根据当前大模型与智能体框架的发展路径,基本上是以项目-任务-技能的设计逻辑,技能是智能体执行具体动作的基本单元。因此,在当前阶段可以从流程图上设计,自己的哪些工作技能是可以被自动化的,并参考建议5的两条曲线的发展阶段,在合适时机完成技能进阶。10,关注Agents Marketplace的增长趋势我们很快会进入一个智能体无处不在的世界,手机将会成为我们日常最为依赖的智能体助手,智能体的数量是会远远超过地球的人口数量,10年后大概率是数以百亿级的Agents规模,也可能不止。Agents Marketplace作为智能体的自主交易网络,会成为超级个体们的主要交易网络,未来大量的商业活动都将依赖于Agents Marketplace这一商业形态。因此,需要保持对 Agents Marketplace的关注。抓住未来几年Agents Markerpace开始指数增长时的增长红利。对成为超级个体感兴趣,可以参与面向未来的Super-X Plan
事实上,初探AI+Web3这一交叉领域的独立研究,确实面临着巨大的工作量,双边技术路线的相关知识体系非常庞大,而我的长期研究任务中,在于完成AGI+Web3+Metaverse的整合融通,这更是一个更为艰巨的任务。过去定位于单一技术路线的社区/小组,无法满足/适应未来的发展需求,因此在今年推动成立一个跨技术领域的前沿科技社区——Mix Tech,以解决过去在单一技术社区/共创小组所面临的局限。我们已然听见科技大航海时代的号角,对此我们需要采取正确的战略,提前布局以便抓住这终生难得的战略大机遇。Mix Tech是一个推动科技创新发展的未来社区,以跨学科视野、自由、包容、开放的姿态,对各种技术路线的碰撞融合,都报以无限可能性的期待,这里不仅有跨学科前沿学术的认知,也推崇创新商业的落地应用。Mix Tech 主要聚集AI、Web3、Metaverse三大技术领域的技术专家、从业者 、研究员、创业者等,以及应用AI\Web3\Metaverse相关技术用于提升自身专业的专家,赋能商业需求的相关从业者等,欢迎对于技术交叉创新,有着包容开放心态的有志之士。Mix Tech将推出免费开源的科技创新x跨学科公开课,以推动科技行业的创新事业长期发展。所以这将是一项长期主义者的开源工作,VION WILLIAMS活多久,这公开课就将持续有多久。如何进行跨学科研究 —— 艾伦·雷普克
跨媒介叙事 —— 玛丽-劳尔·瑞安
历史的基本概念 —— 科塞雷克
概念史与历史时间理论:以科塞雷克为中心的考察 —— 方维规
概念的历史分量——方维规
鞍型期与概念史 ——方维规
逻辑哲学论——维特根斯坦
师徒天才:罗素和维特根斯坦——赵汀阳
我们赖以生存的隐喻——乔治·莱考夫
放弃幻想,全面拥抱Transformer:自然语言处理三大特征抽取器(CNN/RNN/TF)比较——张俊林
AI和加密的历史交汇 —— 王超
Web3新互联网社交网络 —— Joel John
10个具有代表性的AI-Agents,将如何改变互联网/重塑Web3 —— VION WILLIAMS
Bittensor: A Peer-to-Peer Intelligence Market —— YUMA RAO
LLM Powered Autonomous Agents——LilianWeng
Checks and balances: Machine learning and zero-knowledge proofs —— Elena Burger
The Current and Future State of Intents in Web3:Powerful Intents —— Mike Calvanese / Brink
Cybernetics of Epistemology —— Heinz von Foerster
Co-design for Interdisciplinary Research Communities
Possible Worlds in Video Games: From Classic Narrative to Meaningful Actions
GradientCoin: A Peer-to-Peer Decentralized Large Language Models
Blockchain-Based Federated Learning: Incentivizing Data Sharing and Penalizing Dishonest Behavior
A Resource Allocation Scheme with the Best Revenue in the Computing Power Network
Negotiating Socially Optimal Allocations of Resources
Greedy Algorithms for Maximizing Nash Social Welfare
Creative Agents: Empowering Agents with Imagination for Creative Tasks
JARVIS-1: Open-World Multi-task Agents with Memory-Augmented Multimodal Language Models
TaskMatrix.AI: Completing Tasks by Connecting Foundation Models with Millions of APIs
The State of Zero-Knowledge Machine Learning (zkML)
A Survey of Transformers
Agent AI: Surveying the Horizons of Multimodal Interaction
Generative Agents: Interactive Simulacra of Human Behavior