读完需要
速读仅需 2 分钟
请尊重原创劳动成果
转载请注明本文链接
及文章作者:机器学习之心
摘要:RIME-GPR霜冰算法优化高斯过程回归多变量回归预测,Matlab实现
1
基本介绍
Matlab实现RIME-GPR霜冰算法优化高斯过程回归多变量回归预测
1.Matlab实现RIME-GPR霜冰算法优化高斯过程回归多变量回归预测(完整源码和数据)
2.输入多个特征,输出单个变量,多输入单输出回归预测;
3.多指标评价,评价指标包括:R2、MAE、MSE、RMSE等,代码质量极高;
4.优化参数为:优化核函数超参数 sigma,标准差,初始噪声标准差;
5.excel数据,方便替换,运行环境2018及以上,可在下载区获取数据和程序内容。
2
数据集
2.2
运行效果
完整代码链接:https://mbd.pub/o/bread/mbd-Z5WYkpZq
也可扫描二维码:
3
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
M = size(P_train, 2);
N = size(P_test, 2);
%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);
[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);
%% 转置以适应模型
p_train = p_train'; p_test = p_test';
t_train = t_train'; t_test = t_test';
%% 超参数设置
pop = 5; % 数量
Max_iter = 8; % 最大迭代次数
dim = 3; % 优化参数个数
lb = [0.1, 0.1, 10]; % 参数取值下界(核函数超参数 sigma,标准差,初始噪声标准差)
ub = [1, 1, 30]; % 参数取值上界(核函数超参数 sigma,标准差,初始噪声标准差)
%% 优化
fobj=@(X)fobj(X,f_,p_train,t_train,p_test,t_test);
[Best_score,Best_pos, curve] = RIME(pop, Max_iter, lb, ub, dim, fobj);
% Best_pos = [0.6, 0.7, 30]; % 优化下界
sigmaL0 = Best_pos(1) * ones(f_, 1); % 核函数超参数 sigma l
sigmaF0 = Best_pos(2); % 核函数超参数 - 标准差 sigma f
sigmaN0 = Best_pos(3); % 初始噪声标准差 sgima n
嗯,细心的你会发现:https://mbd.pub/o/slowtrain/work
博客专家认证,机器学习领域创作者,2023博客之星TOP50,主做机器学习和深度学习时序、回归、分类、聚类和降维等程序设计和案例分析。科研课题模型定制/横向项目模型仿真/职称学术论文辅导/模型程序讲解均可联系本人唯一QQ1153460737(其他均为盗版,注意甄别)
技术交流群:购买博主任意代码或分享博主博文到任意三方平台后即可添加博主QQ进群