读完需要
速读仅需 2 分钟
请尊重原创劳动成果
转载请注明本文链接
及文章作者:机器学习之心
摘要:TSOA-TCN-Attention凌日算法优化时序卷积神经网络多变量多步预测
1
基本介绍
2
运行效果
完整代码可扫描二维码获取:
或电脑浏览器打开链接:https://mbd.pub/o/bread/mbd-Z5WWmZtp
3
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
methods
function layer = spatialDropoutLayer(dropoutFactor,NameValueArgs)
% layer = spatialDropoutLayer creates a spatial dropout layer
% with dropout factor 0.02;
%
% layer = spatialDropoutLayer(dropoutProb) creates a spatial
% dropout layer with the specified probability.
%
% layer = spatialDropoutLayer(__,Name=name) also specifies the
% layer name using any of the previous syntaxes.
% Parse input arguments.
arguments
dropoutFactor = 0.02;
NameValueArgs.Name = ""
end
name = NameValueArgs.Name;
% Set layer properties.
layer.Name = name;
layer.Description = "Spatial dropout with factor " + dropoutFactor;
layer.Type = "Spatial Dropout";
layer.DropoutFactor = dropoutFactor;
end
function Z = predict(layer, X)
% Forward input data through the layer at prediction time and
% output the result.
%
% Inputs:
% layer - Layer to forward propagate through
% X - Input data
% Output:
% Z - Output of layer forward function
% At prediction time, the output is unchanged.
Z = X;
end
function Z = forward(layer, X)
4
嗯,细心的你会发现:https://mbd.pub/o/slowtrain/work
博客专家认证,机器学习领域创作者,2023博客之星TOP50,主做机器学习和深度学习时序、回归、分类、聚类和降维等程序设计和案例分析。
其他多变量多步代码:
SCI一区级 | Matlab实现GWO-CNN-LSTM-selfAttention多变量多步时间序列预测
SCI一区级 | Matlab实现EVO-CNN-LSTM-Mutilhead-Attention多变量多步时间序列预测
SCI一区级 | Matlab实现EVO-CNN-BiLSTM-Mutilhead-Attention多变量多步时间序列预测