CMES 特刊推荐 | 机器学习引导下的智能建模及其工业应用

文摘   2024-09-06 15:15   江苏  

本期由北京科技大学罗熊教授,英国赫尔大学程永强教授,中南大学廖志芳教授, 三位客座编辑组建了"Machine Learning-Guided Intelligent Modeling with Its Industrial Applications特刊。


本期特刊精选了16篇文章,汇集了机器学习在工业应用方面的最新进展,希望能为相关领域学者提供新的思路和参考,欢迎阅读。

01

机器学习引导下的智能建模及其工业应用特刊介绍

Title: 

Introduction to the Special Issue on Machine Learning-Guided Intelligent Modeling with Its Industrial Applications


Authors:

Xiong Luo, Yongqiang Cheng, Zhifang Liao


Citation:

Luo X, Cheng Y, Liao Z. Introduction to the special issue on machine learning-guided intelligent modeling with its industrial applications. Comput Model Eng Sci. 2024;141(1):7-11 https://doi.org/10.32604/cmes.2024.056214


长按识别二维码

阅读原文


02

基于图像指纹和注意力机制的电力系统负荷估算算法

Title: 

An Image Fingerprint and Attention Mechanism Based Load Estimation Algorithm for Electric Power System


Authors:

Qing Zhu, Linlin Gu, Huijie Lin


Citation:

Zhu Q, Gu L, Lin H. An image fingerprint and attention mechanism based load estimation algorithm for electric power system. Comput Model Eng Sci. 2024;140(1):577-591 https://doi.org/10.32604/cmes.2023.043307


长按识别二维码

阅读原文



03

CAW-YOLO:基于跨层融合和加权感受野的遥感小目标检测YOLO算法

Title: 

CAW-YOLO: Cross-Layer Fusion and Weighted Receptive Field-Based YOLO for Small Object Detection in Remote Sensing


Authors:

Weiya Shi, Shaowen Zhang, Shiqiang Zhang


Citation:

Shi W, Zhang S, Zhang S. CAW-YOLO: cross-layer fusion and weighted receptive field-based YOLO for small object detection in remote sensing. Comput Model Eng Sci. 2024;139(3):3209-3231 https://doi.org/10.32604/cmes.2023.044863


长按识别二维码

阅读原文


04

基于空间和频域自适应嵌入机制的异质性图神经网络

Title: 

Heterophilic Graph Neural Network Based on Spatial and Frequency Domain Adaptive Embedding Mechanism


Authors:

Lanze Zhang, Yijun Gu, Jingjie Peng


Citation:

Zhang L, Gu Y, Peng J. Heterophilic graph neural network based on spatial and frequency domain adaptive embedding mechanism. Comput Model Eng Sci. 2024;139(2):1701-1731 https://doi.org/10.32604/cmes.2023.045129


长按识别二维码

阅读原文


05

基于机器学习的知识图谱构建综述

Title: 

A Survey of Knowledge Graph Construction Using Machine Learning


Authors:

Zhigang Zhao, Xiong Luo, Maojian Chen, Ling Ma


Citation:

Zhao Z, Luo X, Chen M, Ma L. A survey of knowledge graph construction using machine learning. Comput Model Eng Sci. 2024;139(1):225-257 https://doi.org/10.32604/cmes.2023.031513


长按识别二维码

阅读原文


06

基于改进深度森林的用户购买意图预测

Title: 

User Purchase Intention Prediction Based on Improved Deep Forest


Authors:

Yifan Zhang, Qiancheng Yu, Lisi Zhang


Citation:

Zhang Y, Yu Q, Zhang L. User purchase intention prediction based on improved deep forest. Comput Model Eng Sci. 2024;139(1):661-677 https://doi.org/10.32604/cmes.2023.044255


长按识别二维码

阅读原文


07

基于ANP-EWM融合健康度的冷凝器劣化演变趋势研究

Title: 

Research on Condenser Deterioration Evolution Trend Based on ANP-EWM Fusion Health Degree


Authors:

Hong Qian, Haixin Wang, Guangji Wang, Qingyun Yan


Citation:

Qian H, Wang H, Wang G, Yan Q. Research on condenser deterioration evolution trend based on ANP-EWM fusion health degree. Comput Model Eng Sci. 2024;139(1):679-698 https://doi.org/10.32604/cmes.2023.043377


长按识别二维码

阅读原文


08

基于退化类型自适应和深度卷积神经网络(CNN)的退化图像分类模型

Title: 

A Degradation Type Adaptive and Deep CNN-Based Image Classification Model for Degraded Images


Authors:

Huanhua Liu, Wei Wang, Hanyu Liu, Shuheng Yi, Yonghao Yu, Xunwen Yao


Citation:

Liu H, Wang W, Liu H, Yi S, Yu Y, Yao X. A degradation type adaptive and deep cnn-based image classification model for degraded images. Comput Model Eng Sci. 2024;138(1):459-472 https://doi.org/10.32604/cmes.2023.029084


长按识别二维码

阅读原文


09

基于强化学习的人机协作角色动态分配在幕墙安装中的应用

Title: 

Role Dynamic Allocation of Human-Robot Cooperation Based on Reinforcement Learning in an Installation of Curtain Wall


Authors:

Zhiguang Liu, Shilin Wang, Jian Zhao, Jianhong Hao, Fei Yu


Citation:

Liu Z, Wang S, Zhao J, Hao J, Yu F. Role dynamic allocation of human-robot cooperation based on reinforcement learning in an installation of curtain wall. Comput Model Eng Sci. 2024;138(1):473-487 https://doi.org/10.32604/cmes.2023.029729


长按识别二维码

阅读原文


10

复杂环境下自动充电机器人避障路径规划的改进RRT∗算法

Title: 

Improved RRT∗ Algorithm for Automatic Charging Robot Obstacle Avoidance Path Planning in Complex Environments


Authors:

Chong Xu, Hao Zhu, Haotian Zhu, Jirong Wang, Qinghai Zhao


Citation:

Xu C, Zhu H, Zhu H, Wang J, Zhao Q. Improved rrt∗ algorithm for automatic charging robot obstacle avoidance path planning in complex environments. Comput Model Eng Sci. 2023;137(3):2567-2591 https://doi.org/10.32604/cmes.2023.029152


长按识别二维码

阅读原文


11

开源工业软件项目中的代码审查员智能预测

Title: 

Code Reviewer Intelligent Prediction in Open Source Industrial Software Project


Authors:

Zhifang Liao, Bolin Zhang, Xuechun Huang, Song Yu, Yan Zhang


Citation:

Liao Z, Zhang B, Huang X, Yu S, Zhang Y. Code reviewer intelligent prediction in open source industrial software project. Comput Model Eng Sci. 2023;137(1):687-704 https://doi.org/10.32604/cmes.2023.027466


长按识别二维码

阅读原文


12

STPGTN–考虑空间约束和瞬态测量数据的多分支参数识别方法

Title: 

STPGTN–A Multi-Branch Parameters Identification Method Considering Spatial Constraints and Transient Measurement Data


Authors:

Shuai Zhang, Liguo Weng


Citation:

Zhang S, Weng L. STPGTN–A multi-branch parameters identification method considering spatial constraints and transient measurement data. Comput Model Eng Sci. 2023;136(3):2635-2654 https://doi.org/10.32604/cmes.2023.025405


长按识别二维码

阅读原文


13

LF-CNN:深度学习引导的小样本遥感分类目标检测

Title: 

LF-CNN: Deep Learning-Guided Small Sample Target Detection for Remote Sensing Classification


Authors:

Chengfan Li, Lan Liu, Junjuan Zhao, Xuefeng Liu


Citation:

Li C, Liu L, Zhao J, Liu X. LF-CNN: deep learning-guided small sample target detection for remote sensing classification. Comput Model Eng Sci. 2022;131(1):429-444 https://doi.org/10.32604/cmes.2022.019202


长按识别二维码

阅读原文


14

机器学习增强的边界元方法:高斯求积点的预测

Title: 

Machine Learning Enhanced Boundary Element Method: Prediction of Gaussian Quadrature Points


Authors:

Ruhui Cheng, Xiaomeng Yin, Leilei Chen


Citation:

Cheng R, Yin X, Chen L. Machine learning enhanced boundary element method: prediction of gaussian quadrature points. Comput Model Eng Sci. 2022;131(1):445-464 https://doi.org/10.32604/cmes.2022.018519


长按识别二维码

阅读原文


15

基于一维卷积网络的工业恶意软件分类可转移特征

Title: 

Transferable Features from 1D-Convolutional Network for Industrial Malware Classification


Authors:

Liwei Wang, Jiankun Sun, Xiong Luo, Xi Yang


Citation:

Wang L, Sun J, Luo X, Yang X. Transferable features from 1d-convolutional network for industrial malware classification. Comput Model Eng Sci. 2022;130(2):1003-1016 https://doi.org/10.32604/cmes.2022.018492


长按识别二维码

阅读原文


16

精密惯性系统故障预测和定量异常测量的快速小样本建模方法

Title: 

A Fast Small-Sample Modeling Method for Precision Inertial Systems Fault Prediction and Quantitative Anomaly Measurement


Authors:

Hongqiao Wang, Yanning Cai


Citation:

Wang H, Cai Y. A fast small-sample modeling method for precision inertial systems fault prediction and quantitative anomaly measurement. Comput Model Eng Sci. 2022;130(1):187-203 https://doi.org/10.32604/cmes.2022.018000


长按识别二维码

阅读原文


CMES期刊简介

 扫码关注更多资讯

CMES-Computer Modeling in Engineering & Sciences 期刊专注于刊发具有合理永久价值的原创研究论文和综述,涉及固体、流体、气体、生物材料和其他连续体的计算力学、计算物理、计算化学和计算生物学等领域。欢迎新颖的计算方法和最先进的计算算法,例如软计算、基于人工智能的机器学习方法和计算统计方法。

版权声明

本文由泰克赛思南京办公室负责编译。详细内容请以英文原版为准。如需转载,请于公众号后台留言咨询。

联系方式: cmes@techscience.com

喜欢今天的内容?给我们点个【在看】吧!

泰克赛思CMES
CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES是一本国际开放获取期刊,目前已被SCI, SCOPUS等数据库收录。
 最新文章