目录
中国科大联合研究团队成功制备可加速骨修复的植入物材料
中国科大实现单根短链DNA分子序列结构化学识别的原理性展示
中国科大揭示不同维度储能纳米材料的电化学渗流规律
中国科大揭示自控力的社会认知机制
中国科大提出甲烷介导的氨动力发动机构想
中国科大实现非接触心脏活动监测
中国科大研究团队提出过渡金属硫族化合物超晶格自组装的普适策略
中国科大提出并实现面向任意长程耦合的片上频率合成维度
中国科大实现基于马约拉纳零模的琼斯多项式计算
中国科大发现相互作用增强超辐射相变的新机制
中国科大以硫同位素解析雾霾物源和形成机制
中国科大实现固态单自旋最优化投影测量
1
中国科大联合研究团队成功制备可加速骨修复的植入物材料
骨科感染的治疗和骨骼功能的恢复是现代医学领域面临的重大挑战,世界卫生组织(WHO)报告显示,全球每年约有150万严重骨感染病例。传统临床实践中长期使用抗生素可能导致抗微生物耐药性(AMR)的增加,而生物膜引发的炎症反应也会阻碍组织愈合过程,使骨科感染治疗尤为棘手。
近日,中国科学技术大学联合中南大学湘雅三医院利用等离子体浸没离子注入(PIII)技术成功制备了含有钴元素的钛基骨植入物,这类植入物在无需摄入外源性重组蛋白或抗生素的条件下,依然具有降低感染并加速骨修复的功能,为骨骼疾病提供了潜在的治疗方案。此成果以“A Multifunctional Cobalt-Containing Implant for Treating Biofilm Infections and Promoting Osteointegration in Infected Bone Defects Through Macrophage-Mediated Immunomodulation”为题,发表在《先进科学》(Advanced Science)上(DOI:10.1002/advs.202409200)。
图1. Co- Ti共承载钛设计的复杂系统以促进病变骨缺损的再生
研究团队通过等离子体浸没离子注入技术实现了一步式制备含钴元素的钛基植入物。这些植入物具有出色的生物物理适应性,能够调节免疫功能,促进感染性骨缺损的愈合与组织再生。研究表明,此类植入物有效地破坏了细菌生物膜的形成,以耐甲氧西林金黄色葡萄球菌(MRSA)为例,其粘附率降低了80%以上,展现出显著的抗菌活性。研究发现,这种新材料促使巨噬细胞转变为有助于组织愈合的M2型表型,形成了有益于骨骼重建的免疫微环境,并表现出降低TRAP酶活性的倾向。研究分析了钴元素如何通过影响骨免疫反应,引导骨髓间充质干细胞(BMSCs)向成骨方向分化,为发展骨修复材料提供了强有力的实验证据。本研究获得的基因组学数据揭示了潜在的mTOR-Sema6d-PPAR𝛾通路,识别该通路为从分子维度理解材料调节巨噬细胞极化提供了支持,验证了含钴钛合金材料在骨修复与免疫调节方面的治疗潜力。
图2. Co-Ti有效消除MRSA生物膜
论文的第一作者为中国科学技术大学先进技术研究院硕士研究生晏侬洋与中南大学湘雅医学院博士研究生周豪;共同通讯作者为中国科学技术大学吴征威特任研究员和中南大学湘雅医学院邓幼文教授。该工作得到了安徽省蚌埠市、禹会区及湖南省的资助。
论文链接:https://onlinelibrary.wiley.com/doi/10.1002/advs.202409200
(核科学技术学院、先进技术研究院、科研部)
2
中国科大实现单根短链DNA分子序列结构化学识别的原理性展示
近日,中国科学技术大学单分子科学团队的董振超研究小组,通过发展与扫描隧道显微镜相结合的亚纳米分辨针尖增强拉曼光谱(TERS)技术,首次在单碱基分辨水平上展示了单根短链DNA分子序列结构的实空间化学识别。该成果于11月27日在国际知名学术期刊《美国化学会志》上在线发表。
生物分子(如DNA、蛋白质等)的序列测定和结构解析对于理解它们的生物学机制和功能至关重要。尽管传统的结构生物学方法已广泛应用于生物分子结构的分析,但对于分子量较小的生物分子,尤其是那些难以标记或结晶的分子,想要在亚分子水平上确定这些生物分子的化学结构仍然存在很大挑战,因此急需开发一种无需标记、且具备高化学灵敏度和高空间分辨率的生物分子结构表征方法。近些年来,单分子针尖增强拉曼光谱技术不断发展,通过把拉曼光谱识别分子结构振动指纹信息的能力和扫描隧道显微镜(STM)的高空间分辨能力结合起来,可以在亚纳米尺度上对单分子的内部化学结构进行实空间表征,为实现生物分子序列结构的识别提供了可能。
2013年,该团队首次在有机小分子体系展示了亚纳米分辨的单分子拉曼成像技术 [Nature 498, 82 (2013)],将具有化学识别能力的空间分辨率提高到了一个纳米以下(~0.5nm)。2019年,团队进一步将空间分辨率提高到了1.5 Å的单个化学键识别水平,并基于这项技术提出了一种重构分子化学结构的新方法 [National Science Review 6,1169(2019)]。然而,对于像DNA链这样的复杂生物分子来说,尽管此前有许多研究组基于大气环境下的TERS技术试图对DNA碱基序列进行识别,但由于来自单个核苷酸的拉曼信号很弱,而且DNA分子的柔性使得测量过程中分子极易发生弯曲和变形,给实验测量带来了巨大挑战,因此至今仍然未能实现单碱基分辨的清晰测序展示,更不用说对单个碱基中的官能团进行识别和定位。
在本工作中,团队以人工设计的单根短链DNA分子作为模型体系,探索TERS技术识别柔性生物分子序列结构的可行性。针对上述挑战,该团队采取了三种策略来攻克难关:(1)通过精确调控STM针尖尖端的原子尺度银团簇结构以构筑等离激元纳腔,使得分子所在的局域电磁场得到高度聚焦和增强,从而实现对DNA分子拉曼信号的增强;(2)通过低温冷却样品(液氮甚至液氦温度)并降低激发拉曼散射的激光功率以提高吸附在表面的DNA分子的稳定性,抑制分子热运动对测量的干扰;(3)通过开发基于电磁脉冲阀的样品制备方法,将溶液中的DNA分子转移到真空下原子级洁净的金属表面,避免DNA分子在衬底表面的聚集和污染,使得清晰的单分子研究成为可能。在此基础上,团队首先对由同种核苷酸组成的短链DNA分子分别进行TERS测量,获得不同核苷酸的拉曼指纹作为参考数据库,然后设计了由四个不同核苷酸组成的单链DNA分子(序列为ATGC)作为原理性展示模型体系,通过STM形貌表征定位单个DNA分子,进一步研究其位置相关的TERS光谱特性,依靠不同核苷酸的光谱指纹特征将各个不同的碱基一一识别出来,从而首次实现在空间和光谱上同时对DNA分子序列结构的清晰识别。通过对单个DNA分子碱基的进一步实空间TERS成像,可以更好地展示这种单碱基水平的分辨能力,从成像图案中不仅可以分辨单个DNA分子中相邻的核苷酸,还可以获得DNA分子吸附构型的重要结构信息,甚至区分碱基和磷酸骨架的空间分布,以及单个碱基T中的甲基基团和单个碱基G/T/C中的羰基基团的空间位置。这些原理性展示结果不仅证明了TERS技术分辨单个碱基、单个官能团的能力,也为跟踪生物分子中的修饰或活性位点提供了可能。展望未来,TERS这种无标记方法如果与阵列纳米加工和人工智能结合起来,有望发展成一种新的系列结构测量技术,为单个生物大分子(如长链DNA/RNA、蛋白质等)序列结构的实空间化学识别提供一种潜在的新途径。
韩彧博士生、董立副研究员和朱路遥博士生为这篇文章的共同第一作者。张超副研究员、张尧教授、董振超教授是文章的共同通讯作者。该系列研究工作得到了基金委、科技部、中国科学院、教育部、安徽省等单位的支持。
图注:(a) TERS识别单根短链DNA分子序列结构的原理性展示示意图;(b)短链DNA分子中四个碱基上的TERS测量结果,展示出不同碱基的拉曼指纹特征;(c)短链DNA分子的TERS成像以及对应的DNA分子结构示意图。
图注:TERS序列测定的艺术渲染图。(艺术图由董振超教授团队的韩彧、朱路遥、冒文杰设计制作)。
论文链接:https://pubs.acs.org/doi/10.1021/jacs.4c12393
(合肥微尺度物质科学国家研究中心、中国科学院量子信息与量子科技创新研究院、科研部)
3
中国科大揭示不同维度储能纳米材料的电化学渗流规律
近日,中国科学技术大学苏育德研究员课题组与俞书宏院士团队合作,在国际期刊《先进材料》(Advanced Materials)上发表了题为“Cellulose nanofiber-supported electrochemical percolation of capacitive nanomaterials with 0D, 1D and 2D structures”的研究论文。该研究构建了三种不同维度储能纳米材料的电化学渗流模型,系统探究了活性纳米材料的维度和密度对于电极储能性能和力学性质的影响。研究发现,当体系中活性纳米材料质量百分数处于某一临界值(定义该临界值为电化学渗流阈值)时,比电容发生了至少一个数量级的激增。储能纳米材料的维度与电化学渗流阈值和电极力学性能密切相关,本项研究成果对于发展绝缘基底支撑的电化学储能电极具有指导意义。
储能纳米材料具有独特的物理和化学特性,在电化学储能领域被广泛关注。由于极易发生聚集或堆叠,纳米活性材料通常需要依靠支撑基底构筑成宏观电极。纤维素纳米纤维是一种天然可再生材料,具有优异的力学性能和促进离子传输的能力。诸多研究将纤维素纳米纤维与不同维度的储能纳米材料复合,构筑可用于电池和超级电容器的自支撑储能电极。对于电极材料,内部电子通路的构建是必要前提,但是本征纤维素纳米纤维是电子绝缘体。已有研究证明,复合材料的导电渗流阈值与导电添加剂的维度密切相关。然而在电化学储能领域,不同维度储能纳米材料在绝缘基底中的电化学渗流行为及其对于电极力学性能的影响尚未明确。
基于此,本项研究选择本征电导率相近的0D碳纳米颗粒、1D碳纳米管和2D还原氧化石墨烯为例,通过精确调控其在纤维素纳米纤维基底的负载,构建了三种电化学渗流研究模型(图1)。将所制备的纤维素纳米纤维基自支撑电极组装成超级电容器研究电极的电化学储能性能,研究人员发现,电化学渗流行为与纳米活性材料的维度密切相关。当0D碳纳米颗粒、1D碳纳米管和2D还原氧化石墨烯的质量百分数分别为60.0%, 14.3%和66.7%时,比电容出现至少1个数量级的增长。由此可见,相对于零维和二维材料,一维材料更容易发生电化学渗流。进一步提高活性物质的占比虽然能够提高比电容活性,但同时伴随着电极力学性质的牺牲,这些行为均与纳米活性材料的维度密切相关。研究结果显示,储能纳米材料维度的选择和密度的精确调控,对于构筑基于绝缘基底自支撑电极材料至关重要。
图1:不同维度储能纳米材料的电化学渗流模型示意图
本文的第一作者为中国科学技术大学博士生杭臣臣,通讯作者为中国科学技术大学俞书宏院士和苏育德研究员。该工作得到新基石研究员项目、国家重点研发计划、中国科学院战略性先导科技专项基金、国家自然科学基金重大项目、中国科学院青年创新促进会、安徽省重大基础研究项目、国自然面上项目、科技部重点研发计划青年项目等资助。
论文链接:https://onlinelibrary.wiley.com/doi/full/10.1002/adma.202414904
(化学与材料科学学院、纳米科学技术学院、苏州高等研究院)
4
中国科大揭示自控力的社会认知机制
近日,中国科学技术大学人文与社会科学学院心理学系查汝晶特任副研究员和科技哲学系硕士生金晨(已毕业)在认知神经心理学核心期刊《神经影像》(NeuroImage)上发表了题为“The dorsomedial prefrontal cortex promotes self-control by inhibiting the egocentric perspective”的文章。该研究通过揭示抑制自我中心视角,能够显著提升人们的自控能力。这一关键性发现对于深化我们对自控力较弱的青少年学生成瘾行为心理机制的认知,以及推动开发针对性的干预策略,具有重要的意义。
研究团队利用大数据、多模态和高精度经颅直流电刺激技术,深入探讨了自我中心视角在自控力过程中的作用。实验中,参与者需要在立即获得的小额奖励和延迟后获得的大额奖励之间做出选择。研究结果显示,利用阳极刺激背内侧前额叶时,参与者选择延迟奖励的比例显著增加。进一步的分析发现,阳极刺激还降低了参与者在视觉观点采择任务中的自我中心视角一致性效应。具体来说,当要求参与者从自己的视角(自我中心视角)或从一个虚拟角色的视角(他人中心视角)来判断红盘数量时,阳极刺激抑制参与者在自我中心视角中的一致性效应。这些结果揭示了通过抑制自我中心视角,为人们提供了一种更加灵活和有效的自控策略。
该研究的社会科学意义在于,它挑战了关于自我与自主性的传统哲学观念,表明真正的自主性不仅仅是一种内在状态,还是一种通过设身处地考虑他人以及在人际交往中有效调控自身冲动与行为的能力所塑造出的社会产物。此外,该研究为干预低自控力的学生网络游戏成瘾问题开辟了新途径。借助心理物理干预技术,抑制其自我中心倾向,有望增强自控力,进而降低其冲动性并改善其社会功能。中国科大人文与社会科学学院查汝晶特任副研究员和生命科学与医学部张效初教授为本文共同通讯作者,人文与社会科学学院科技哲学系硕士生金晨(已毕业)与生命科学与医学部硕士生李莹(已毕业)为本文共同第一作者。中国科学技术大学为本文第一单位。
本研究主要通讯作者查汝晶特任副研究员在此基础上,主持申报的“大语言模型结合时间干涉经颅电刺激降低学生网络游戏成瘾冲动性研究”教育部人文社会科学研究青年基金,通过了教育部的审核获准立项(项目批准号24YJCZH014)。本项目旨在将大语言模型与前沿的时间干涉经颅电刺激技术融入学生网络游戏成瘾的研究中,此举不仅深化了心理学领域的探索,还促进了人工智能、信号与信息处理以及模式识别等多学科的交叉融合。这一创新性的研究路径是中国科大在新文科建设中,以科技驱动为特色的一次有益且富有前瞻性的尝试。本研究得到了国家自然科学基金、教育部人文社会科学研究青年基金、安徽省自然科学基金青年项目、中央高校基本科研业务费专项资金、安徽省青少年心理健康与危机智能干预哲学社会科学重点实验室开放基金和上海外国语大学教育部脑机智能信息行为重点实验室开放项目等资助。
论文链接:https://www.sciencedirect.com/science/article/pii/S1053811924003768
(人文与社会科学学院 心理学系、科研部)
5
中国科大提出甲烷介导的氨动力发动机构想
中国科学技术大学曾杰教授、姚涛教授、王占东教授、李洪良副教授团队合作,在氨动力发动机研究领域取得重要进展。他们提出并验证了甲烷介导的氨动力发动机构想,相关成果以“A Scenario for a Carbon-Neutral Ammonia-Fueled Engine Mediated by Catalytic NH3 Cracking and CO2 Hydrogenation”为题发表在国际著名学术期刊《德国应用化学》(Angew. Chem. Int. Ed. 2024, e202420292)上。
氨动力发动机在实现碳中和方面展现了巨大的潜力。然而,氨气作为发动机燃料的应用面临着如火焰传播速度低、自燃温度高、点火能量高以及燃烧极限窄等挑战。另外,在氨动力发动机应用中,有害污染物氮氧化物的排放问题也尤为严重。如何解决氨气作为燃料本身燃烧特性差、以及有害尾气排放问题极其重要。
不同于以往直接燃烧氨气,研究团队提出了一种创新的氨气动力发动机构想,选择甲烷作为媒介,将甲烷燃烧(CH4+ 2O2→ CO2+2H2O)与尾气原位处理相结合(图1),间接实现了氨气的燃烧(4NH3+ 3O2= 2N2+ 6H2O),既保留了氨气的零碳排放,又避免了氨气燃烧的本身缺陷。为实现这一过程,研究团队设计了“空间解耦”和“空间耦合”两条路径。第一种“空间解耦”路径将尾气处理分为两步:首先负载型钌团簇催化剂催化氨气裂解产生氮气和氢气(2NH3= N2+ 3H2),氨气的转化率达到~100%;裂解产生的氢气与尾气中的二氧化碳反应,在负载型镍基催化剂作用下,生成甲烷(CO2+ 4H2= CH4+ 2H2O),二氧化碳的转化率达到97.4%,甲烷的选择性接近~100%。第二种“空间耦合”路径为将氨和尾气中的二氧化碳直接一起反应,生成氮气、甲烷和水(3CO2+ 8NH3= 3CH4+ 4N2+ 6H2O),氨和二氧化碳的转化率分别达到80.1%和49.3%。这两种方式均实现了氨气与氧气的非接触性反应,从而避免了氮气的过度氧化生成氮氧化物。采用该设计,可以将传统的甲烷燃料发动机改造成氨气动力发动机。基于这一设计理念,其他成熟的汽油或柴油驱动的发动机也可以通过将二氧化碳甲烷化替换为二氧化碳加氢制汽油或柴油反应,改造为氨动力发动机。
图1.研究团队提出的甲烷介导的氨动力发动机概念图
中国科学技术大学特任副研究员任杰为论文第一作者。中国科学技术大学曾杰教授、姚涛教授、王占东教授和李洪良副教授为该论文的共同通讯作者。本工作得到国家重点研发计划、国家自然科学基金、中国科学院等项目经费的支持。
论文链接:https://doi.org/10.1002/anie.202420292
(工程科学学院、合肥微尺度物质科学国家研究中心、国家同步辐射实验室、科研部)
6
中国科大实现非接触心脏活动监测
中国科学技术大学陈彦教授团队在非接触心脏活动感知研究领域取得重大进展。研究团队首次发现并利用心脏机械活动谐波中的“拍频效应”这一重要物理现象,成功克服了远场条件下由呼吸运动引起的大数量级干扰。在无需任何模型训练的情况下,他们利用毫米波雷达技术实现了高精度的非接触人体心脏活动监测。这项研究成果标志着非接触心脏监测技术迈入新阶段,为心血管疾病的早期预防与长期监测提供了创新解决方案。相关研究成果以“Monitoring Long-term Cardiac Activity with Contactless Radio Frequency Signals”为题,于12月5日发表在《自然·通讯》(Nature Communications)上。
心血管疾病是全球第一大致死疾病,每年约有1790万人因此失去生命。在我国,随着人口老龄化的加剧,心血管疾病的发病率与致死率均居世界前列。研究表明,许多早发心血管疾病可以通过及时诊断和治疗来有效预防。因此,长期连续的心脏活动监测对疾病的早期发现至关重要。然而,现有心脏监测技术多为接触式测量,例如传统的心电图设备需要在体表贴附多个电极,可穿戴设备则常基于光电容积描记法(PPG)。这些方法由于舒适性不足、对使用环境敏感等原因,难以实现长期连续的心脏活动监测,从而可能错过心血管疾病诊断和治疗的最佳时期。
图一:非接触心脏活动监测系统
近年来,毫米波雷达技术被应用于心脏活动监测,展现出非接触、便捷和高精度的潜力。然而,技术发展仍面临“呼吸谱泄漏”这一重大挑战。由于呼吸幅度(厘米级)远大于心跳幅度(亚毫米级),呼吸谐波在心跳频段产生显著的频谱泄漏,导致信干噪比严重下降,限制了心脏活动监测的精度。
对此,研究团队通过系统性分析,发现了两个重要的物理现象,从而成功破解这一难题。首先,研究团队观察到呼吸谐波比心跳谐波衰减更快,尤其在高频段,呼吸干扰的影响显著减弱。其次,研究团队发现心跳谐波中存在“拍频效应”,即高阶心跳谐波叠加会产生与心跳周期一致的拍频特征,其频率等于相邻谐波频率之差。
基于这两大发现,研究团队创新性地将心跳特征提取频段从基频转移到高阶谐波频段(约10倍频),从而有效消除了呼吸谐波的干扰,显著提升了监测精度。在包括6222名参与者的大规模医院场景和长达21个夜晚的日常生活场景中,系统取得了26.1毫秒和34.1毫秒的中位误差,充分验证了其医学应用价值。
这一研究突破为毫米波雷达在心脏活动监测领域的应用奠定了重要基础,在使用过程中,被测者不需要佩戴电极也不需要去除衣物,以无感的方式完成长期持续的心脏活动监测,展现出广阔的临床应用前景。
图二:监测系统的应用场景和部分结果展示
中国科学技术大学网络空间安全学院博士后张宾宾为文章的第一作者;陈彦教授为文章的通讯作者;中国科学技术大学附属第一医院马礼坤教授、中国科学技术大学孙启彬研究员、胡洋副教授、张东恒副研究员、李亚东、卢智、陈金波、王浩宇、周放、濮玉等为文章的共同作者;学校赋权企业合肥中科知奇信息科技有限公司为文章合作单位。相关工作得到了国家自然科学基金委、科技部、安徽省和中国科学技术大学的经费资助。
论文链接:https://doi.org/10.1038/s41467-024-55061-9
(网络空间安全学院、科研部)
7
中国科大研究团队提出过渡金属硫族化合物超晶格自组装的普适策略
近日,中国科学技术大学合肥微尺度物质科学国家研究中心国际功能材料量子设计中心和物理系中国科学院强耦合量子材料物理重点实验室曾长淦教授、张汇副研究员实验团队联合崔萍研究员理论团队,在过渡金属二硫化物(TMDs)研究领域取得了重要进展。他们提出了一种通用的自组装策略,成功合成了1T/1H超晶格,为多功能电子器件的开发提供了新的可能性。相关研究成果以“Self-assembly of 1T/1H superlattices in transition metal dichalcogenides”为题,于12月4日在线发表在《自然·通讯》(Nature Communications)上。
近年来,TMDs因其丰富的物理性质受到广泛关注。由TMDs构成的范德华异质结和超晶格不仅能够展现各组分的固有特性,还通过层间相互作用产生超越单一组分的电子结构和功能特性。然而,传统的TMD异质结和超晶格制备方法主要依赖于外延生长或二维材料的机械堆叠,这些逐层人工构建技术通常复杂且耗时,制备效率和样品质量受到限制。
研究团队提出了一种基于自组装的通用策略,成功实现了TMD超晶格的高效合成。该策略的核心在于通过调控T相和H相的形成能,使T相和H相能够自发组装成1T/1H超晶格。以NbSe2-xTex为例,通过调整Te与Se的化学计量比,显著降低了T相与H相之间的形成能差异,从而促进1T与1H层的交替自组装,最终形成稳定的1T/1H超晶格。进一步研究表明,这种1T/1H超晶格保留了1T和1H层各自的电子特性,为新型电子器件和光电子器件的开发提供了重要的材料基础。
此外,研究团队还验证了该策略的普适性。通过将NbSe2中的Nb原子替换为V或Ti原子,他们同样成功合成了1T/1H超晶格。这些发现为其他层状材料的高效制备开辟了新的途径。
图:(a)扫描透射电子显微镜图像,展示了1H层和1T层的交替堆叠结构。(b)不同掺杂浓度下2H、1T以及1T/1H超晶格的相对形成能。
我校合肥微尺度物质科学国家研究中心博士生罗超杰、特任副研究员曹国花博士和物理学院博士生王碑林为论文共同第一作者。曾长淦教授、张汇副研究员与崔萍研究员为论文共同通讯作者。该工作得到了国家自然科学基金委、科技部、中国科学院以及安徽省的资助。
原文链接:https://www.nature.com/articles/s41467-024-54948-x
(合肥微尺度物质科学国家研究中心、物理学院、中国科学院量子信息与量子科技创新研究院、科研部)
8
中国科大提出并实现面向任意长程耦合的片上频率合成维度
我校郭光灿院士团队在片上光学模拟领域取得重要进展。该团队李传锋、唐建顺等人在基于薄膜铌酸锂光芯片的频率合成维度研究中,提出将模拟的格点限制在一个腔模内的新方法并进行了实验验证,极大地降低了片上频率合成维度的频率要求。该成果12月5日发表在国际知名期刊《物理评论快报》上。
以光为载体的频率合成维度是近年来兴起的一种模拟手段,用于研究不易直接接触或观测的物理系统,对验证理论乃至预测物理现象具有重要意义。在许多工作中,研究者用含电光调制器的光纤环腔实现频率合成维度,其中以间隔为自由光谱范围(FSR)的模式作为格点,用电光相位调制引入格点之间的相互作用,其调制频率通常为FSR的整数倍。同时,薄膜铌酸锂芯片有高电光系数的天然条件,以及高稳定性和强可扩展性的优势,非常适合作为频率合成维度的平台。然而,光芯片上的腔长短,FSR大,导致以前的方法所需的调制频率很高(10GHz或更高),对片上的调制效率以及配套的设备都提出非常高的要求。特别是存在长程耦合时,所需的频率将进一步翻倍,极大地阻碍了片上频率合成维度的发展。
在本工作中,研究组为了缓解这一困难,提出可以通过使用远小于一个腔模宽度的调制频率(MHz量级),去选出一系列限制在腔模之内的频率作为格点形成合成维度。在合理的近似下,研究组实验验证了这种方法与传统的实现方法得到的准动量空间的能带完全吻合。实验结果表明,在存在8倍和9倍于频率晶格常数的长程耦合时,该方法将实验的频率要求降低了5个数量级以上。
实验示意图及能带结果图。上方表示准动量空间能带测量实验示意图;插图表示模拟中链状结构的格点分布,所有的格点都被限制在一个共振峰内;下方左图表示包含长程耦合的管状结构示意图;右图表示实验测得的包含两种耦合长度的模型的能带图,其中r为两种耦合的长度比,ϕ表示光学规范势。
本工作在极大地缓解高频对片上合成维度带来的困难的同时,也保持了传统实现方法的拓展性,能够推广应用至更高维的模型中,在薄膜铌酸锂光芯片上实现高维和复杂的频率合成维度。审稿人高度评价该成果“opens a new avenue within the area of studying synthetic dimensions on photonic chips(为研究光芯片上的合成维度开辟了一条新途径)”。
中国科学院量子信息重点实验室博士生汪兆安、曾晓东、特任副研究员王轶韬为论文的共同第一作者。该工作得到了合肥国家实验室、国家自然科学基金委、中国科学院、安徽省和中国博士后基金的资助。
论文链接:https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.133.233805
(中国科学院量子信息重点实验室、物理学院、中国科学院量子信息和量子科技创新研究院、科研部)
9
中国科大实现基于马约拉纳零模的琼斯多项式计算
我校郭光灿院士团队在拓扑量子计算领域取得重要进展。该团队李传锋、许金时、韩永建、孙凯等人与英国利兹大学Jiannis Pachos教授合作,利用自主搭建的光量子模拟器计算了基于马约拉纳零模拓扑结构的琼斯多项式。研究团队通过模拟马约拉纳零模的编织操作,计算了不同拓扑结构的扭结对应的琼斯多项式,所得的琼斯值可以实现对不同扭结结构的区分。该成果12月5日发表在《物理评论快报》上。
琼斯多项式是扭结的一个重要拓扑不变量,它可以被用来区分不同的扭结结构。同时,复杂拓扑结构的琼斯多项式计算是一个#P-hard问题,使用经典算法难以求解。不过,利用马约拉纳零模这一非阿贝尔任意子系统,可以通过构建相应的编织操作来计算扭结的琼斯多项式。不同于三维空间中交换两个全同的玻色子或费米子,系统整体波函数仅会多出一个整体相位;对于二维空间中具有特殊性质的“非阿贝尔任意子”,其交换后的整体波函数会经历一个幺正变换,因此,可以通过对非阿贝尔任意子的交换操作构造量子门,实现具有天然容错特性的拓扑量子计算。已有大量的实验工作研究了马约拉纳零模的物理特性,但由于实验材料及技术的要求极高,通过编织马约拉纳零模实现特定的拓扑量子算法,仍然极具挑战性。
图1.理论框架。(a)编织操作与不同拓扑扭结的对应;(b)三条Kitaev链模型下马约拉纳零模的编织交换示意图。
图2.实现马约拉纳零模交换操作的实验装置图。
图3.不同编织操作的琼斯多项式实验结果。
基于光子空间模式的量子模拟器,研究组开展了一系列模拟非阿贝尔任意子拓扑特性的实验研究,先后模拟了单个Kitaev链马约拉纳零模的交换操作[Nat. Commun. 7, 13194 (2016)]、探测了两条Kitaev链模型下马约拉纳零模的非阿贝尔几何相位[Sci. Adv. 4, eaat6533 (2018)]以及进一步推广到高维情形——仲费米子零模,研究了其编织过程对局域噪声免疫、并且保持了量子互文资源守恒[PRX Quantum 2, 030323 (2021)]。在这些工作的基础上,研究组将之前基于单光子空间模式的编码方式扩展到双光子的空间模式,利用双光子的符合计数进行编码,有效提高了可编码量子态的数量。同时,通过引入基于Sagnac干涉仪的量子冷却装置,将之前工作中的耗散式演化成功转换为非耗散演化,提升了装置对光子资源的回收利用能力,有助于实现多步骤的量子演化操作。这些改进的实验技术极大地提升了自主研制光量子模拟器的能力,为实验模拟三条Kitaev链模型下马约拉纳零模的编织操作奠定了坚实的技术基础。实验中,量子态与编织交换过程的平均保真度均在97%以上。研究组通过组合三条Kitaev链模型下马约拉纳零模不同的编织操作,模拟了五种典型的拓扑扭结,通过将扭结对应的量子末态向初始量子态投影,得到了扭结对应的琼斯多项式的数值解,进一步将不同扭结进行区分。这对于拓扑扭结频繁出现的研究领域,如统计物理、化学分子合成以及DNA复制等均具有重要启示意义。
中国科学院量子信息重点实验室博士研究生李家坤为该论文的第一作者。该工作得到了合肥国家实验室、国家自然科学基金委、安徽省以及中国科学院的资助。
论文链接:https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.133.230603
(中国科学院量子信息重点实验室、物理学院、中国科学院量子信息和量子科技创新研究院、科研部)
10
中国科大发现相互作用增强超辐射相变的新机制
我校郭光灿院士团队易为教授研究组在超冷原子及开放体系相变的理论研究中取得重要进展,揭示了原子-腔混合系统中相互作用增强超辐射相变的新机制。相关成果以“Interaction-Enhanced Superradiance of a Rydberg-Atom Array”为题,于12月9日发表于国际学术期刊《物理评论快报》。
超辐射相变最早可追溯到半个世纪前人们对Dicke模型的研究。在Dicke模型中,彼此间无相互作用的原子与光场耦合,当耦合增强至阈值时,体系中出现正常态到超辐射态的连续相变——在超辐射态下,原子的激发态和光场均呈高占据状态。类似的现象同样存在于开放量子系统的稳态中,而近年来超冷原子气体量子调控和量子模拟方面的进展,极大地推动了对开放量子系统超辐射相变的探索。在近期的理论和实验中,研究者发现在量子气体-光腔的混合系统中,量子统计对超辐射相变有重要影响。然而,这些系统的原子间通常不存在相互作用或相互作用较弱。是否存在某种机制,令原子间相互作用显著影响开放系统的稳态超辐射相变,这在理论上是一个重要问题。
图1. (a) 稳态相图,由光子数刻画;(b) 不同腔耗散κ下的相边界。
该研究工作基于里德堡原子阵列与腔的耦合体系,发现了相互作用对超辐射相变的显著增强效应(图1)。以里德堡原子阵列耦合耗散腔的装置(图2a)为例,在一系列特定的相互作用强度下,即便任意小的原子-腔耦合也能带来超辐射的稳态,且这一行为不受腔耗散的影响。研究揭示,该现象的出现源于原子间相互作用引起的低能集体态的简并(图2c)。这一机制使得体系在相变临界点附近的行为,可以用涌现的量子Rabi模型进行刻画,为超辐射相变的理论图像和实验实现提供了新的视角。结合此前人们对弱相互作用玻色子和非相互作用费米气体中超辐射现象的理解,该工作完善了对量子多体开放系统中超辐射相变的认识,揭示了量子多体物理在非平衡相变中的作用。
图2. (a) 里德堡原子阵列耦合耗散腔示意图;(b) 将广义Dicke模型等效为Dicke态构成的量子Rabi模型;(c)基于实验参数的临界点计算以及低能集体原子态的简并。
中国科学院量子信息重点实验室易为教授为通讯作者,博士生韩奕文为论文第一作者,博士生李浩伟为第二作者。该研究受到国家基金委、科技部、安徽省理论物理基础学科研究中心等项目的资助。
论文链接:https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.133.243401
(中国科学院量子信息重点实验室、物理学院、中国科学院量子信息和量子科技创新研究院、科研部)
11
中国科大以硫同位素解析雾霾物源和形成机制
中国科大沈延安课题组在研究雾霾的物质来源和形成机制上取得重要进展。研究人员系统采集了华北不同地质时代代表性煤矿的煤样品,开展了1000℃条件下煤的燃烧实验;通过对燃烧产生颗粒物中硫酸盐的高精度硫同位素分析,研究人员发现了典型的非质量硫同位素分馏现象。与现代雾霾硫酸盐的硫同位素比较分析表明,煤燃烧产生的颗粒物是华北雾霾的主要物源之一。同时,该研究还对欧洲文物、古建筑和雕像表层黑色硫酸盐壳的形成提出了新的解释,对历史遗迹保护具有重要参考意义。相关研究成果在线发表于12月10日出版的国际综合学术期刊《美国科学院院刊》(PNAS)上。
受人类活动和自然条件的共同影响,当今大气污染情况严重,其中雾霾天气严重影响了经济发展和人类健康,因此研究雾霾的物质来源和形成机制具有重要的理论和现实意义。研究人员首先对不同地质时代的煤进行燃烧实验,进而收集粒径小于2.5微米的颗粒物样品并对其中的硫酸盐组分进行高精度硫同位素测试。结果显示,煤和其燃烧产物的硫同位素组成具有显著差异(如图1);结合理论计算,研究人员发现煤燃烧产生了非质量硫同位素分馏。前人的研究表明,非质量硫同位素分馏主要出现在22亿年之前的岩石样品中,因此煤的燃烧代表了一种新的非质量硫同位素分馏机制,具有重要的理论意义。
图1 煤中的黄铁矿和煤燃烧产生颗粒物中硫酸盐的硫同位素组成
进一步分析发现,煤燃烧产生的颗粒物与华北雾霾颗粒物中硫酸盐的同位素组成非常相似(如图2)。前人对华北雾霾硫酸盐的硫同位素异常组成存在不同认识,而煤燃烧实验结果证明煤燃烧产生的颗粒物是华北雾霾的重要物源。研究人员还发现,相似硫同位素的异常组成也出现在欧洲文物和雕像以及古老建筑物等表面的黑色硫酸盐壳体上。20世纪60年代以来,欧洲科学家的研究证明黑色硫酸盐壳体的形成经历了复杂的物理和化学过程,其中大气污染和火山喷发均可能起到重要作用。通过硫同位素的系统分析,研究人员提出煤燃烧产物是欧洲雕像、建筑物等历史遗迹上硫酸盐壳的重要物源,这一结论与当时欧洲在工农业发展过程中大量使用煤产生的大气污染历史高度一致。
图2 现代硫酸盐气溶胶以及煤燃烧产生的颗粒物中硫酸盐的同位素组成
研究结果为雾霾的物质来源和形成机制等提供了新的研究思路和证据,为大气颗粒物污染防治政策的制定提供了新的科学依据,也充分体现了硫同位素在解析现代及历史环境方面的重要作用。
沈延安为论文的第一和通讯作者。
论文链接:https://www.pnas.org/doi/10.1073/pnas.2408199121
(地球和空间科学学院、科研部)
12
中国科大实现固态单自旋最优化投影测量
中国科学技术大学中国科学院微观磁共振重点实验室在量子信息处理领域取得重要进展,基于费舍尔信息提出一种分析量子系统读出保真度的通用理论框架和最优读出方法,并在单个固态自旋系统中完成实验验证。这项研究成果以“Optimal repetitive readout of single solid-state spins determined by Fisher information”为题,于12月6日在线发表在《科学进展》(Science Advances)上。
量子比特的投影测量是量子信息处理,尤其是容错量子计算中的核心技术。随着量子技术的不断发展,投影测量已在超导电路、离子阱、量子点和固态缺陷等多种物理系统中成功实现。典型的投影测量采用阈值法,通过预设阈值区分两种状态。然而,这种阈值方法未能有效利用光子到达的时间信息,从而影响了读出保真度。近年来,许多研究尝试通过考虑时间信息来提高读出保真度和速度,但大多数研究主要集中在模型推导和数值模拟,缺乏充分的实验验证。此外,尽管机器学习等方法也被应用于挖掘光子到达时间中的隐含信息,但在提高保真度方面的效果并不显著,且缺乏严谨的理论解释。
图1:金刚石中NV色心及投影测量。(A)金刚石NV色心及其附近核自旋的示意图;(B)13C核自旋的读出序列及结果。每个事件均为M=1300次循环的求和结果,通过阈值判断核自旋状态;(C) NV色心附近13C核自旋的读出结果。下方子图展示了上方图中第一个点的原始数据。
为全面解决上述问题,本研究团队利用统计学上的费舍尔信息这一理论工具分析读出保真度的理论上限,从而避免了在缺乏坚实理论基础的情况下进行盲目尝试。研究团队采用基于最大似然估计的量子态判别方法,并通过金刚石中氮-空位(NV)色心实验验证了该方法的有效性。
实验结果表明,对于核自旋态的读出,基于最大似然估计的判别方法相较于阈值法成功实现33.8(1.2)%的错误率降低,将核自旋态的读出保真度提高至99.649(5)%。该方法不仅在核自旋的投影测量中取得成功,还在NV色心的电荷态读取中得到验证,显示出该方法的普适性。该工作还探讨了费舍尔信息界限的可到达性,证明在特定条件下,最大似然估计方法能够实现费舍尔信息所限制的读出错误下界。
图2:NV色心附近13C核自旋的投影测量错误。(A)使用阈值(TH)方法和最大似然估计(ML)方法进行数据处理的流程。(B)不同方法读出错误的实验结果。横轴表示读出循环的次数,对于TH方法,读出次数过多会因状态翻转导致误差增加。
本文研究结果表明,在现有实验设备的基础上,充分利用时间信息可以提高读出保真度,而无需进行复杂的硬件升级。本研究所提出的方法和理论框架具有普适性,不仅可应用于固态自旋体系,还可以扩展至超导电路、离子阱、中性原子和量子点等其他量子系统以提升读出保真度,具有广泛的应用前景。
中国科学院微观磁共振重点实验室博士后赵致远与博士研究生徐韶亦为共同第一作者,杜江峰院士、石发展教授、谢天宇特任副研究员为共同通讯作者。此项研究得到国家自然科学基金委、中国科学院、科技部、安徽省等资助。
论文链接:https://www.science.org/doi/10.1126/sciadv.adp9228
(中国科学院微观磁共振重点实验室、物理学院、中国科学院量子信息和量子科技创新研究院、科研部)