目录
中国科大在极弱磁场量子精密测量领域取得重要进展
中国科大成功观测双光子空间波函数动力学演化
中国科大在汉镜铅同位素考古研究中取得新进展
中国科大在单分子磁体领域取得重要进展
中国科大发现等离激元耦合对二维超导特性的显著调控
中国科大在分子与金属表面碰撞的非绝热动力学方面取得新进展
中国科大在氢燃料电池异质性退化在线可视化研究中取得新进展
中国科大在快充型锂离子电池研究中取得新进展
1
中国科大在极弱磁场量子精密测量领域取得重要进展
中国科学技术大学中国科学院微观磁共振重点实验室彭新华教授、江敏副教授团队在极弱磁场量子精密测量领域取得重要进展,发现了混合原子自旋之间的法诺共振干涉效应,提出了全新的磁噪声抑制技术,成功降低磁噪声干扰至少2个数量级。相关研究成果以“New Classes of Magnetic Noise Self-Compensation Effects in Atomic Comagnetometer”为题发表于国际著名学术期刊《物理评论快报》[Phys. Rev. Lett. 133, 023202 (2024)]。
在过去数十年中,超越粒子物理标准模型的奇异自旋相互作用,已引起精密测量领域的广泛关注。这些奇异自旋相互作用涵盖了很多前沿领域,例如搜寻自旋-暗物质粒子相互作用、第五力、永久电偶极矩、自旋-引力耦合,以及对CPT和洛伦兹不变性的检验等。在这些精密实验中,奇异相互作用可以引起自旋的微小能级移动,从而等效为作用在自旋上的磁场,极弱磁场测量技术为检验这类微弱磁场信号提供了全新手段。其中,彭新华教授、江敏副教授团队在2021年首次利用基于氙原子(Xe129)的自旋放大器,开展了暗物质的直接搜寻实验并且首次突破宇宙天文学界限(SN1987A)[Nat. Phys. 17, 14021407 (2021)],还完成多个奇异相互作用实验[Sci. Adv.7,eabi9535 (2021), Phys. Rev. Lett. 129, 051801 (2022), Sci. Adv. 9, eade0353 (2023)]。然而,这些研究普遍面临一个巨大的实验挑战:信号极其微弱,常被噪声背景掩盖,尤其是容易受到磁噪声及其他与磁场相关的系统性效应的干扰。为了克服这些挑战,原子共磁力计提供了一个重要的解决方案,它利用两种不同的自旋来减小磁场漂移和波动的影响。然而,以往原子共磁力计仅对低频磁噪声(小于1Hz)有效,严重阻碍了在广阔的未探索参数空间中对奇异自旋相互作用的实验搜寻。
针对上述难题,研究团队发展了基于法诺共振干涉相消的磁噪声抑制方法,并在气态氦和钾原子混合体系中进行了实验验证。在该体系中,被激光极化的钾原子作为气态氦原子核自旋的极化和读出手段,通过自旋交换碰撞实现对氦原子核自旋的极化。其中的核心思想是,钾原子和氦原子间的自旋交换耦合还导致它们各自感受到来自另一种原子的等效磁场,其中钾原子感受到的氦原子等效磁场和外界磁噪声发生相消干涉时就实现了磁噪声抑制。在以往的实验中,偏置磁场通常需要设定为与氦原子产生的等效场等大反向,以使氦原子核自旋绝热地随外界低频磁噪声变化从而达到抑制效果。本文研究人员在实验中发现,通过改变施加的偏置磁场大小,同时相应调整探测方向与外界特定频率磁噪声之间的夹角,可以实现对更高频率磁噪声的有效抑制,并从法诺共振干涉相消这个新的角度为实验现象提供了完整而精确的理论解释。研究人员利用上述磁噪声自补偿效应在实验上展示了从近直流到高达200Hz范围内对磁噪声的抑制,且抑制倍数均在2个量级以上。
图 1:共磁力计在不同频率处测得响应大小及法诺线型拟合结果。图中“法诺干涉抑制”频率处可实现2个量级以上的磁噪声抑制
该项工作指出,在磁探测灵敏度受磁噪声(如磁屏蔽材料产生的约翰逊噪声等)限制的情形下,利用该磁噪声自补偿效应有望将赝磁场探测灵敏度提升1个量级,在更广频率范围内达到0.1fT/Hz1/2水平。这项技术将用于基础物理研究中的暗物质探测、奇异自旋相互作用的探测等领域,具有重要的科学意义和应用前景。
中国科学院微观磁共振重点实验室博士研究生秦毓舒、邵朕涵为该文共同第一作者,彭新华教授、江敏副教授为该文通讯作者。该研究得到了科技部、国家自然科学基金委和中国科学院的资助。
论文链接:https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.133.023202
(中国科学院微观磁共振重点实验室、物理学院、中国科学院量子信息和量子科技创新研究院、科研部)
2
中国科大成功观测双光子空间波函数动力学演化
中国科学技术大学郭光灿院士团队在量子测量与传感研究中取得重要进展。该团队李传锋、许金时、刘曌地等人首次提出并实验实现了量子夏克–哈特曼(Shack–Hartmann)波前传感器。通过重构双光子横向空间波函数,观测了位置纠缠光子对在自由空间传播时振幅关联和相位关联的动力学演化。该成果7月16日发表在国际知名期刊《物理评论快报》上。
光场相位分布的测量是一个关键问题,特别是在自适应光学中,可用来校正像差的影响。研究团队在经典波前传感方面做了一系列的工作,包括研究了基于光子玻姆轨迹实验装置的弱测量波前传感,实现了更高的空间分辨率[Laser Photon. Rev. 14, 1900251 (2020); Opt. Lett. 46, 5352 (2021); Opt. Lett. 47, 2734 (2022)],以及提出并数值模拟了基于弱测量波前传感的纠缠光子波前重构[Phys. Rev. A 107, 042608 (2023)]等。
经典光学中,夏克–哈特曼波前传感是一种广泛使用的相位测量方法,它使用微透镜阵列,将光场在局部空间的传播方向转换为聚焦光斑的位移,从而测量得到光场相位梯度的分布,并重构出相位。其空间分辨率由透镜尺寸决定。研究团队受此启发,提出并实现了量子夏克–哈特曼波前传感器,观测到位置纠缠光子对空间波函数的动力学演化。双光子射入透镜阵列后,在其后焦面探测双光子的联合空间概率分布,如图1所示。通过对单个微透镜孔径内所有点的条件概率分布求和并利用梯度算法可以重构出相位,结合强度分布即可得到双光子空间波函数。研究团队测量了自发参量下转换产生的光子对在自由空间不同演化时间的空间波函数,观测到双光子在自由空间传播过程中振幅关联逐渐变弱,而相位关联逐渐变强的过程。研究组还测量了双光子在动量空间使用空间光调制器加载双曲抛物面相位后的波函数,如图2所示。该方法作为量子自适应光学这一全新领域的关键技术,在未来可应用于量子通信、天文观测和多光子相互作用的检验中。
中国科学院量子信息重点实验室博士研究生郑逸和特任副研究员刘曌地为论文共同第一作者。该工作得到了科技部、国家基金委、安徽省、中国科大和中国博士后科学基金会的资助。
图1 量子波前传感原理示意图(小图)和实验装置图。
图2 实验结果图,展现了不同距离传播和相位调制后的波函数。各组数据第一列是双光子纵坐标取中心值时横坐标的联合波函数,第二列是中心点的条件波函数,第三列是中心右上方一点的条件波函数;第一行是理论值,第二行是实验重构结果。
论文链接:https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.133.033602
(中国科学院量子信息重点实验室、中国科学院量子信息和量子科技创新研究院、物理学院、科研部)
3
中国科大在汉镜铅同位素考古研究中取得新进展
近日,中国科学技术大学科技考古实验室与大英博物馆、牛津大学、山东大学、安徽博物院、浙江省文物考古研究所、福建闽越王城博物馆等合作,在国际权威学术期刊Archaeological and Anthropological Sciences(SSCI一区)上发表以“Reconstructing the trade history: provenance study of Han bronze mirrors in and out of Han China”为题的研究成果。
铜镜在汉王朝本土得到普遍使用的同时,也承载着汉文化,沿丝绸之路和海上丝绸之路广泛传播至朝鲜半岛、日本列岛、印度半岛、西伯利亚、中亚等地,是连接欧亚大陆和东亚各国的重要古代实物资料。日本学界自20世纪70年代就开始对日本出土汉镜的铅同位素溯源研究工作,结果表明日本出土西汉镜与东汉镜铅同位素数据差异显著,研究者基于此建立西汉镜使用“华北铅”、东汉镜使用“华南铅”的简化模型。这一模型也多作为分析基础用于探讨中国境内外如长安、新疆、阿富汗、泰国等地出土汉镜的来源。因此,中国出土汉镜是否符合这一简化模型,亟待开展系统性科技考古分析工作。
图1 样品来源分布图
课题组对中国东南地区浙江安吉、安徽寿县、安徽阜阳、福建武夷山(图1)等地出土的共47面汉镜进行了铅同位素比值分析,并对其中采取到金属本体的样品进行主微量元素分析和金相组织结构的观察。综合现有中国不同地区出土汉镜的全部科技分析数据,在统一分期的基础之上对其铅同位素数据分布的时代特征及其与汉镜生产、流通的关系进行探索,在此基础上对汉镜的域外输出进行重新解读。
中国出土汉镜的铅同位素和元素分析结果分别如图2和图3所示。中国出土西汉镜的铅同位素数据既涵盖了JW区域(日本出土西汉镜的数据分布范围),也涵盖了JE区域(日本出土东汉镜的数据分布范围),但本土东汉镜与日本出土东汉镜一致,都分布于JE区域。西汉早期和中晚期铜镜的铅同位素数据分布没有变化,表明整个西汉时期金属铅的来源一直比较稳定(图2);但中晚期铜镜合金成分和微量元素数据分布相对其他时期更加集中,或可理解为这一时期朝廷“盐铁官营”政策的实施也影响到了铜镜手工业的生产管理。由此亦可解释西汉中晚期输出日本、泰国、阿富汗、匈奴和古滇王国等地的铜镜数据分布范围也基本相同这一现象。同时,上述研究结果也表明,日本出土西汉铜镜仅来自当时中国生产铜镜的部分地区,可能与西汉时期中日交流的特定路线有关。本研究所获成果最为重要的学术意义,是证明了由日本出土汉镜研究获得的简化模型,不可简单应用于中国汉代铜镜的产地研究。
图2 中日汉镜铅同位素比值数据对比图
图3 各地出土汉代铜镜主微量元素数据对比图
本文为中国科大与英国牛津大学多年合作项目Flow of Ancient Metalacross Eurasia(theFLAME)的成果之一。该项目致力于探索横跨欧亚大陆的古代金属资源流通和资源控制等问题,相继在Antiquity等历史、考古学国际刊物发表多篇重要成果。期间,学校科技考古实验室也与牛津大学考古学院联合培养了长孙樱子和王翔两名博士生。
论文第一作者为学校科技考古实验室与英国牛津大学考古与艺术史研究实验室联合培养博士生王翔,通讯作者为大英博物馆亚洲部早期中国藏品负责人刘睿良研究员和中国科学技术大学金正耀教授。论文合作者包括牛津大学考古与艺术史研究实验室Mark Pollard教授、中国科学技术大学金属稳定同位素地球化学实验室黄方教授、中国科学技术大学科技考古实验室范安川副教授、山东大学文化遗产研究院高军助理研究员、安徽博物院李瑞亮副研究馆员、浙江省文物考古研究所张士轩副研究馆员、福建闽越王城博物馆华锋林等。
本研究得到国家自然科学基金项目(12035017&41473010),国家留学基金委项目(201706340035)以及欧洲研究理事会(European Research Council,ERC,101071707)与英国国家与科研创新署(UK Research and Innovation,UKRI,EP/X042332/1)协同资助的“骏工程(Horsepower)”项目的支持。
文章链接:https://doi.org/10.1007/s12520-024-02016-2
(科技考古实验室)
4
中国科大在单分子磁体领域取得重要进展
近日,中国科学技术大学杨上峰教授团队在单分子磁体领域取得重要进展,合成了首例含有镝-镝(Dy-Dy)共价键的双金属富勒烯,获得了具有强反铁磁耦合的高性能单分子磁体,其阻塞温度为目前报道的所有通过4f电子直接耦合的多核单分子磁体中的最高值。相关研究成果以“Short Didysprosium Covalent Bond Enables High Magnetization Blocking Temperature of a Direct 4f-4f Coupled Dinuclear Single-Molecule Magnet”为题发表于国际著名学术期刊《美国化学会志》。
有别于长程有序的传统磁性材料,单分子磁体(single-molecule magnet,简称为SMM)的磁性来源于分子本身,理论上一个分子就是一个独立的“磁畴”,因此在超高密度信息存储和量子计算领域具有广阔的应用前景。以镝(Dy)为代表的镧系金属具有强的磁各向异性,作为磁性中心可使SMM在磁阻塞温度下表现出慢弛豫行为。然而,在含有单个磁性中心的SMM中,量子隧穿效应的普遍存在加快了弛豫过程。为了提升SMM的阻塞温度,一个简单而有效的方法是再引入一个磁性中心,此时弛豫过程为翻转单个磁性中心的磁矩,因此需要翻越由磁耦合作用产生的额外能垒。但是由于4f轨道收缩,镧系金属之间的耦合通常都很弱。由此带来的科学问题为是否可以通过镧系金属形成共价键的方式增强耦合作用。
图:通过Dy-Dy 共价键诱导的强磁耦合单分子磁体。
由全碳原子组成的封闭笼状富勒烯分子,为稳定上述特殊的镧系金属共价键提供了可能,所得到的内嵌金属富勒烯SMM具有化学和热稳定性高、可升华、分子和电子结构易于调控等特点。鉴于此,杨上峰教授团队通过真空电弧放电法合成了首例含有Dy-Dy共价键(键长仅为3.61 Å)的双金属富勒烯Dy2@C82。这一特殊成键性质导致两个Dy离子之间产生很强的反铁磁耦合作用(磁交换能垒为33.9 K),从而有效抑制了量子隧穿效应。Dy2@C82在25 K以下均能展现出SMM特征的磁滞现象,其弛豫时间100秒时对应的阻塞温度(TB,100s)达27.2K,为目前报道的所有通过4f电子直接耦合(不含单电子金属-金属键)的多核单分子磁体中的最高值。这一发现不仅展示了内嵌金属富勒烯在单分子磁体领域的优势,也为研究镧系金属的特殊成键性质提供了重要的科学模型。
此前,胡子琦副研究员和杨上峰教授作为共同通讯作者还受邀为《Chem. Soc. Rev.》撰写了题为“内嵌金属富勒烯分子纳米磁体”的封面综述文章(Chem. Soc. Rev. 2024, 53, 2863-2897)。
该论文的共同第一作者为中国科学技术大学博士生辛金鹏和胡子琦副研究员,通讯作者为杨上峰教授和胡子琦副研究员。该项研究得到了国家自然科学基金委、中国科学院先导专项等项目的资助。
文章链接:
https://pubs.acs.org/doi/10.1021/jacs.4c04429
(化学与材料科学学院、精准智能化学重点实验室、能源材料化学协同创新中心、科研部)
5
中国科大发现等离激元耦合对二维超导特性的显著调控
近日,中国科大合肥微尺度物质科学国家研究中心国际功能材料量子设计中心和物理系中国科学院强耦合量子材料物理重点实验室曾长淦教授、秦维教授、张振宇教授联合日本东北大学助理教授程广珲博士,在等离激元调控超导特性研究中取得重要进展。研究团队通过近场耦合金纳米颗粒的等离激元,实现了对薄层二硒化铌二维超导特性的显著调控(超导温度调控超过40%),并据此设计了等离激元超导开关器件。相关研究成果以“Reversible modulation of superconductivity in thin-film NbSe2via plasmon coupling”为题于在线发表在《自然·通讯》上。
探索超导与光波的耦合不仅能够揭示超导相关的演生量子物态,还有助于开发无耗散超导电路。特别是光场作为一种非侵入式手段,其超快和抗干扰的特性能够推进超导器件的实用化。然而,由于超导材料本身较弱的光-物质相互作用,过去的研究普遍依赖于瞬时的脉冲强光,限制了该领域的研究发展。而等离激元作为固体中电子的集体震荡效应,能够在光与超导体之间起到桥梁作用。等离激元能够将光场压缩到纳米尺度,从而实现等离激元模式与多种准粒子的强相互作用。
曾长淦教授研究团队一直致力于准粒子体系、特别是等离激元体系的量子调控行为研究。在前期的工作中,研究团队发现电子-等离激元耦合对石墨烯电子输运过程中的量子相干性有极大的增强效应(Phys. Rev. Lett. 119, 156803 (2017),该工作的共同第一作者是程广珲和秦维,当时两人为在校博士生),这就启发团队进一步探索等离激元如何对超导这一宏观量子相干现象产生影响。
图示:(a)等离激元金纳米颗粒与二维超导体复合器件示意图;(b)等离激元共振激发下,观测到超导温度的显著调控;(c)等离激元超导开关操作。
研究团队将典型的二维超导体二硒化铌与等离激元金纳米颗粒相结合,通过可见光辐照共振激发金纳米颗粒的等离激元,发现二硒化铌的超导电性被大幅抑制。在光子通量9.36×1013s-1mm-2(相比常见脉冲激光低至少10个数量级)下,超导温度的调控幅度超过40%。结合对二硒化铌的厚度依赖关系以及理论分析,观测到的超导显著调控来源于等离激元诱导的倏逝波(evanescent field)与二硒化铌电子之间的高效耦合。基于这一发现,研究团队开发设计了等离激元超导开关器件,实现了对超导态-非超导态之间的可逆转换操作。这项工作不仅为光控超导提供了有效的方法,也为未来寻找玻色子辅助超导配对以及超越BCS理论的非传统超导机制提供了启示。
日本东北大学材料科学高等研究所助理教授程广珲博士为论文第一作者,曾长淦教授、秦维教授和程广珲博士为论文共同通讯作者。该工作得到了国家自然科学基金委、科技部、中国科学院以及安徽省的资助。程广珲博士得到了日本学术振兴会科研费以及日本东北大学的资助。
论文链接:https://doi.org/10.1038/s41467-024-50452-4
(合肥微尺度物质科学国家研究中心、物理学院、中国科学院量子信息与量子科技创新研究院、科研部)
6
中国科大在分子与金属表面碰撞的非绝热动力学方面取得新进展
中国科学技术大学蒋彬教授课题组在分子与金属表面碰撞的非绝热动力学模拟方面取得重要进展。研究成果以“包含振动-电子耦合的分子在金属表面的第一性原理非绝热动力学(First-principles Nonadiabatic Dynamics of Molecules at Metal Surfaces with Vibrationally Coupled Electron Transfer)”为题,于2024年7月19日发表在《物理评论快报》(Physical Review Letters)上(Phys. Rev. Lett., 2024, 133, 036203)。
由于金属表面连续的电子能级,分子与金属表面相互作用时,金属表面的电子很容易被激发,导致分子与金属表面间的非绝热能量转移。包括分子在金属表面极短的振动态寿命、化学电流、氢原子从金属表面散射后剧烈的能量损失、以及振动激发态的NO和CO分子从金属表面散射后的振动弛豫在内的众多实验现象都证明非绝热能量转移广泛存在于各种界面过程中,因此研究非绝热能量转移对于理解化学吸附、电化学、等离激元催化等界面过程具有重要意义。然而,分子与金属表面相互作用的过程中,分子振动、转动、平动与表面声子和电子会耦合在一起,导致极为复杂的能量转移过程,因此,准确描述涉及电子转移的分子在金属表面的非绝热动力学是理论界长期面临的挑战。
为了解决这一问题,研究团队提出了“约束密度泛函理论+嵌入原子神经网络+独立电子面跳跃”的模拟策略,并将该策略用于CO分子从Au(111)表面散射过程中的能量转移动力学模拟。如图1所示,研究人员首先用约束密度泛函理论计算了众多构型的CO分子在金属表面的电子转移透热态,并用嵌入原子神经方法拟合相应的全维势能面,最后用独立电子面跳跃方法模拟分子散射过程中的能量转移过程。研究结果显示,独立电子面跳跃模拟得到的高振动态CO(vi=17)分子散射后的振动末态分布与实验很接近(图2),低振动态CO(vi=2)散射后的振动弛豫概率、平均平动能以及散射角分布也都被理论模拟比较好地重现了(图3)。特别值得一提的是,模拟结果还揭示了不同初始振动态下不同的能量传递通道:在高初始振动态下,分子振动能主要传递到表面电子和分子平动,而在低初始振动态下,分子振动能则只传向表面电子。这一系列的发现对于理解分子-表面体系的能量传递过程有着重要的意义。此外,这套模拟策略有望用于研究一些复杂过程的能量转移动力学,比如光/电化学和等离激元催化过程。
图1 分子在金属表面非绝热动力学模拟的工作流程示意图
图2 CO(vi=17)分子从Au(111)表面散射后的振动末态分布
图3 CO(vi=2)分子从Au(111)表面散射后的一些动力学性质
中国科学技术大学化学物理系博士生孟刚为该论文的第一作者,University of Warwick的Reinhard J. Maurer教授与中国科学技术大学的蒋彬教授为共同通讯作者,西湖大学的窦文杰教授合作参与了研究。该工作得到了中国科学院战略先导科技专项、量子科学与技术创新项目、中国科学院稳定支持基础研究领域青年团队、基金委创新群体、重点项目等基金的资助。计算模拟工作在中国科学技术大学超级计算中心、合肥先进超算中心等完成。
论文链接:https://link.aps.org/doi/10.1103/PhysRevLett.133.036203
(化学与材料科学学院、精准智能化学重点实验室、科研部)
7
中国科大在氢燃料电池异质性退化在线可视化研究中取得新进展
近日,中国科学技术大学工程科学学院精密机械与精密仪器系毛磊特任研究员团队以及化学与材料科学学院材料科学与工程系彭冉冉副教授团队在氢燃料电池异质性退化检测方面取得突破性进展,报道了一种基于磁场成像的氢燃料电池异质性退化在线可视化方法,突破现有氢燃料电池性能表征依赖于材料分析、电流分布等侵入式检测手段的瓶颈,研究成果以题为“Magnetic array-aided visualizing PEMFC degradation heterogeneity”发表在AdvancedScience上。
氢燃料电池技术(PEMFC)被广泛应用于氢能利用领域,然而目前影响商用氢燃料电池系统耐久性的主要因素是电池内部不一致的退化状态(异质性退化)加速了电池整体性能退化。目前主要的性能表征方法难以在电池运行过程中进行电池性能表征并揭示异质性退化状态,从而无法根据性能表征结果对PEMFC系统进行对应调控,进而保障PEMFC系统耐久性。
由于PEMFC性能异质性退化,电池电极表面电流分布不均匀导致电极面内存在电势差,从而导致面内横向电流产生。如图1a所示,作者建立了一个三维多物理场耦合的仿真模型证明这一点:由于异质性退化以及气体流道与肋板处的反应物浓度差异,电极表面电流密度分布不均匀,中间区域电流密度较低(图1b)。如图1c-1d所示,基于Butler-Volmer方程和Biot-Savart定律,电极表面电势不均导致了面内横向电流移动并激发了外部磁场,即PEMFC面内电流及其激发磁场可以反映电池异质性退化。
图1.PEMFC异质性退化仿真
(a) PEMFC仿真模型; (b)PEMFC电极表面电流密度;
(c)PEMFC电极表面横向电流分布; (d)PEMFC横向电流激发磁场分布
据此,作者研发了一款磁通门阵列,该阵列将16个磁通门阵列集成在25cm2空间内,可实现PEMFC电极表面微弱磁场的精准感知。随后在PEMFC耐久性实验运行过程中,采用磁通门阵列在线监测PEMFC外部磁场变化,全寿命周期内PEMFC异质性退化演变进程见图2。磁场图像揭示了PEMFC氢气、氧气出口区域的严重退化现象,并且异质性退化随着实验进程进一步加速。实验结果得到了材料表征验证,证明了该现象由于启停工况下反向电流机制导致。因此,本研究工作中提出了一种基于磁场成像的氢燃料电池异质性退化在线可视化方法,可在PEMFC运行过程中揭示异质性退化的起源和演变过程,在商用PEMFC系统的状态检测及异常识别方面极具应用潜力。
图2. PEMFC异质性退化演变规律
中国科学技术大学工程科学学院博士后孙誉宁为论文的第一作者,毛磊特任研究员为论文的通讯作者。该项工作得到了基金委、中国科学院、安徽省及合肥市等部门的资助。
文章链接:https://doi.org/10.1002/advs.202403631
(工程科学学院、科研部)
8
中国科大在快充型锂离子电池研究中取得新进展
近日,中国科学技术大学化学与材料科学学院季恒星教授、武晓君教授团队联合加州理工洛杉矶分校段镶锋教授团队,在快充型锂离子电池领域取得突破性进展。研究人员成功突破传统意义上固/液、固/气等两相界面上的电催化模型,实现了一种全新的“固相电催化”,并成功将该策略应用于纯固相反应的负极材料中,从而实现了锂离子电池在达到302 Wh kg-1高能量密度的同时实现9 min充电至80%。相关成果以“Solid-State Electrocatalysis in Heteroatom-Doped Alloy Anode Enables Ultrafast Charge Lithium-Ion Batteries”为题于7月17日发表于J. Am. Chem. Soc.上。
图1:固相电催化的设计理念和相关软包电池性能
以合金化反应来存储锂离子的负极材料(如硅、磷等),相对于传统的石墨负极具有明显更高的比容量(>2000 mAh g-1)。然而这类负极材料存储锂离子过程中迟缓的锂化反应动力学是限制该材料体系快充性能的主要因素。电化学研究中常选用电催化的策略来提高反应动力学,然而合金化反应电极材料的锂化反应过程中,反应物和生成物是完全的固相接触,反应物和生成物之间不存在常规电催化所需要的两相界面。因此催化合金化反应负极材料和锂离子的反应动力学目前仍然是研究空白。
针对以上问题,季恒星教授联合武晓君和段镶锋教授团队提出异质原子掺杂催化和进化类负极材料的转化反应速率。结合理论计算和原位X射线吸收谱测试,可以得到以下物理图像(图1):少量的杂原子掺杂(1~5%原子比)能够为合金型负极材料合金化反应提供高反应活性的位点,促进固有化学键的断裂,使得负极材料在掺杂位点负极持续断键分裂成更多更小的结构单元,为进一步的反应提高更多的反应位点,从而降低反应阻抗,提高反应动力学。将合成的硫掺杂磷负极(S/bP)和商用的钴酸锂(LCO)正极配对组装的软包电池,成功实现了302 Wh kg-1的能量密度,9 min充电至80%的容量,并且该快充性能能够稳定循环超过300圈,
中国科学技术大学周恩(博士)、金洪昌(副教授)为论文共同第一作者。该研究是季恒星教授团队在高功率、高能量锂离子电池领域的最新成果,对快充型电池产业化和新型电催化反应的基础研究具有推动作用。该工作受到国家自然科学基金委、国家科技部、中国科学院战略型先导科技专项基金、中央高校基础科研基金的支持。
附文章链接:https://pubs.acs.org/doi/10.1021/jacs.4c03680
(化学与材料科学学院、合肥微尺度物质科学国家研究中心、科研部)