陆陆续续结束的考试
已经开始的夏季学期
还在学校的同学们
一起来看看这周的报告和活动吧
学术报告
数学科学学院
报告题目:Restriction bounds for Neumann Data on surface
报告人:吴先超(武汉理工大学)
报告时间:2024年7月9号 15:00-16:00
报告地点:2206
报告摘要:
Let $\{u_\lambda\}$ be a sequence of $L^2$-normalized Laplacian eigenfunctions on a compact two-dimensional smooth Riemanniann manifold $(M,g)$. Firstly, we aim to provide a simple proof of an $L^p$ restriction bounds of the Neumann data $ \lambda^{-1} \partial_\nu u_{\lambda}\,\vline_\gamma$ along a unit geodesic $\gamma$. Using the $T$-$T^*$ argument one can transfer the problem to an estimate of the norm of a Fourier integral operator and show that such bound is $O(\lambda^{-\frac{1}p+\frac{3}2})$. Moreover, this upper bound is shown to be optimal.
Secondly, we seek to prove the same restricted upper bound without the geodesic assumption. Furthermore we can obtain an improved result on an asymmetric curve if the surface is negatively curved. The novelty of the result induces the uniformly lower bounds for eigenfunctions on such surfaces and shows the nonexistence of invariant asymmetric nodal lines.
报告题目:Complex Quantum Ergodic Restrictions
报告人:肖骁(加拿大McGill大学)
报告时间:2024年7月9号 16:00-17:00
报告地点:2206
报告摘要:
Quantum ergodicity (QE) is the equidistribution property for a sequence of Laplace eigenfunctions as k\to\infty. It is a curious question whether a QE sequence restricted to a hypersurface is also QE on that hypersurface as a submanfold. This is known as the quantum ergodic restriction (QER) problem. I will discuss famous known results on this problem by Toth-Zelditch and Christianson-Toth-Zelditch, as well as a new QER theorem in the setting of Grauert-tube-complexification. Time permitting, I will discuss some applications and possible future works.
时间: 2024年7月8日-19日
地点:五教5201教室
主办单位:中国科学技术大学数学科学学院、中国科学技术大学几何与物理研究中心
化学与材料科学学院
管理学院
精彩活动
“国学史园”知识竞答活动
活动简介:2024年高校“礼敬中华优秀传统文化”宣传教育活动已正式启动,本次活动主要内容之一为“国学史园”知识竞答。
“国学史园”知识竞答活动旨在组织高校师生学习贯彻党的二十大精神、习近平文化思想,聚焦中华优秀传统文化传承创新发展,学习国学知识、探寻文化历史、掌握发展脉络。以国学知识竞答形式,深入了解五千年文明发展中孕育的中华优秀传统文化,从中汲取营养和智慧,练好内功、提升修养,不断增强文化自信。
答题时间:6月17日——8月31日
答题方式:微信扫描下方二维码进入“荔枝竞答”小程序,点击“国学史园”知识竞答模块参与答题。每位参与者只能参与一次