目录
中国科大首次实现无漏洞Hardy佯谬检验
中国科大在人工笼目超晶格中实现色散选择型能带调控
中国科大在人工光合成领域取得新进展
中国科大在半导体量子点系统中实现量子干涉与相干俘获
中国科大发现首例光谱认证的重复性黑洞潮汐撕裂恒星事件
1
中国科大首次实现无漏洞Hardy佯谬检验
中国科学技术大学潘建伟、张强、陈凯等组成的研究团队与南开大学陈景灵等合作,通过发展高效率和高保真度的光学量子纠缠态制备与测量系统,成功实现了关闭探测效率漏洞与局域性漏洞的Hardy非定域性演示。该研究为量子力学非定域性提供了新的证据,并为相关的量子信息应用奠定了基础。8月8日,相关研究成果以“编辑推荐(editor’s suggestion)”的形式发表在国际学术期刊《物理评论快报》(Physical Review Letters)上。
量子力学预言的非定域与经典物理学观念中的定域实在论存在深刻的矛盾,揭示了量子力学与经典物理学的本质不同,因此,对量子力学非定域性的检验一直是物理学的重要研究内容。2022年,Alain Aspect, John Clauser和Anton Zeilinger由于“用纠缠光子进行实验、确立贝尔不等式的违背以及开创量子信息科学”的成就获诺贝尔物理学奖。
上世纪90年代,物理学家Lucien Hardy提出了一种新的检验局域实在性的方式——Hardy佯谬。该佯谬是指,两个观测者对各自收到的粒子进行随机测量并记录结果,在满足三个Hardy条件事件出现的概率为零的情况下,量子力学预测第四个Hardy事件出现的概率大于零,这与定域实在论对第四个Hardy事件概率等于零的预测相悖。Hardy佯谬以简洁的逻辑和最少的资源揭示了量子力学非定域性与定域实在论的矛盾。
尽管已有许多实验检验Hardy佯谬,但这些工作都存在类似于贝尔不等式检验中的局域性漏洞和探测效率漏洞:如果观测者的测量选择与结果能够互相影响(定域性漏洞),或者存在高的光学损耗(探测效率漏洞),经典的定域隐变量理论就可以解释Hardy佯谬。同时,由于在量子力学的预言中,第四个Hardy事件出现的概率很低,想要在实验上确认该事件的出现不是噪声带来的误差,就对纠缠源的保真度和效率提出了极高的要求。因此,实现无漏洞的Hardy佯谬检验一直是理论上和实验上的挑战。
在这项研究中,研究团队在理论上进一步发展了Hardy约束的Eberhard不等式,该不等式允许在探测效率漏洞被关闭且存在噪声的情况下进行Hardy佯谬检验。实验上,研究团队通过优化空间光路的参数,产生了可预报探测效率为82%、保真度为99.1%的纠缠光子对,成功关闭了探测效率漏洞。此外,研究团队通过精心设计的时空配置,确保了纠缠光子对的产生和观测者的测量选择,测量事件和观测者的测量选择均处于类空间隔,从而关闭了局域性漏洞,首次实现了无漏洞的Hardy佯谬检验。
图1无漏洞Hardy佯谬检验实验装置图
该研究不仅对量子物理基础研究具有重要意义,而且对量子密钥分发、量子随机数认证等量子信息技术的发展具有重要影响。审稿人高度评价了这项工作,认为“实验结果以及检验局域实在性的量化证据令人印象深刻(The experimental results, along with the quantified evidence against local realism, are impressive)”,并以“编辑推荐”方式发表。
中国科学技术大学博士生赵思然,董海浩以及杭州电子科技大学青年教师赵帅是该论文的共同第一作者。
该研究得到了科技部、国家自然科学基金委、中国科学院、安徽省、上海市和浙江省的支持。
论文链接:https://link.aps.org/doi/10.1103/PhysRevLett.133.060201
(合肥微尺度物质科学国家研究中心、物理学院、中国科学院量子物理与量子信息创新研究院、科研部)
Science Technology
2
中国科大在人工笼目超晶格中实现色散选择型能带调控
近日,中国科学技术大学合肥微尺度物质科学国家研究中心国际功能材料量子设计中心和物理系中国科学院强耦合量子材料物理重点实验室曾长淦教授、范晓东特任副研究员与武汉大学袁声军教授,以及西班牙Imdea Nanociencia研究所Francisco Guinea教授、博士后詹真合作,利用精心设计的人工笼目超晶格势场,实现了石墨烯中不同色散类型能带的选择性调控。相关研究结果于8月6日发表在权威物理期刊《物理评论快报》上,文章入选编辑推荐(Editors’ Suggestion),并被美国物理学会旗下在线新闻网站“物理(physics.aps.org)”以“Electronic Bands Get a New Tuning Knob(电子能带获得新的调控手段)”为题,进行了精选报道(Featured in Physics)。
图示:人工笼目超晶格示意图。
能带结构是决定固体材料电子特性的基础,如何实现能带结构的按需设计与调控一直是凝聚态领域不懈追求的目标。二维材料由于具有灵活的栅压可调性以及易于构筑异质结的属性,为能带调控研究注入了新的活力。其中最典型的例子即在转角石墨烯体系中,利用层间摩尔势场成功构筑了无色散平带,并观测到了关联绝缘态、非常规超导、量子反常霍尔效应等。另一方面,利用微纳加工方式对二维材料施加周期型栅压可以构筑“人工电子超晶格”,从而实现类似于摩尔势场的能带调控作用。而且,相较于摩尔超晶格,人工电子超晶格的晶格图案、对称性以及势场强度均具有更灵活的可调性,为实现新型能带调控及物态设计提供了一个新的、更具可控性的研究平台。
近期,研究团队精心设计了一种具有笼目晶格形式的人工电子超晶格,实现了石墨烯能带结构中不同色散类型分量的选择型调控。经实验及理论研究发现,在人工笼目势场作用下,石墨烯能带中出现了线性色散能带和无色散平带等不同类型的能带分量。平带分量的电子态局域在超晶格格点处,而线性色散能带分量的电子态更加弥散,因此平带分量更容易被人工超晶格结构中的局域栅压调控。当增强人工势场强度时,平带分量的移动速度明显高于线性色散能带分量,从而导致了实验上观测到的本征狄拉克能带的抑制以及卫星狄拉克能带的增强。另一方面,在垂直磁场的作用下,由于磁场势与超晶格势的竞争,本征狄拉克能带重新占据主导作用。该工作提供了一种全新的原位能带调控手段,并对人工超晶格势场作用下能带演化的动力学过程进行了深入的理解。新闻网站“物理(physics.aps.org)”精选报道中评价到,该工作“为能带结构的按需设计奠定了基础(laying the groundwork for on-demand electronic band design)”。
图示:(a)人工笼目超晶格及色散选择型能带调控示意图;(b)超晶格能带中的线性色散能带分量(D1、D2)及平带分量(F1-F4);(c)随着超晶格势场调制,本征狄拉克能带(IPD)消失,卫星狄拉克能带(SDP)增强。
中国科大博士生汪帅、西班牙Imdea Nanociencia研究所博士后詹真和中国科大范晓东特任副研究员为文章共同第一作者,中国科大曾长淦教授、武汉大学袁声军教授、Imdea Nanociencia研究所Francisco Guinea教授和中国科大范晓东特任副研究员为论文共同通讯作者。上述研究工作得到了国家自然科学基金委、科技部、中国科学院以及安徽省的资助。
文章链接:https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.133.066302
Physics精选报道:https://physics.aps.org/articles/v17/s92
(合肥微尺度物质科学国家研究中心、物理学院、中国科学院量子信息与量子科技创新研究院、科研部)
Science Technology
3
中国科大在人工光合成领域取得新进展
中国科学技术大学江海龙教授团队联合罗毅教授和江俊教授团队在人工光合成研究中取得新进展。研究成果以“Dynamic structural twist in metal–organic frameworks enhances solar overall water splitting”为题,于8月12日在线发表在《自然·化学》(Nature Chemistry)上。应期刊编辑邀请,研究团队、审稿人和编辑共同撰写的研究简报(Research briefing)也在线刊登,期刊审稿人和编辑对该工作给予高度评价,称我们提出了一个“新颖、颠覆性的概念”(a novel and disruptive concept),并认为这为未来发展更高效的光催化剂提供了“令人激动的进展”(an exciting development)。
光催化全水分解制取氢气被视为化学领域的“圣杯”反应,其中一个主要限制瓶颈是光催化过程中的电子和空穴极易复合。为了抑制这种复合现象,研究者们已发展了许多策略。然而,这些经典策略多集中于催化剂的基态结构,而电子和空穴的复合则发生在激发态。自然光合作用中,电子在转移过程中光合蛋白通过构象变化来稳定电子,保证其长距离传输。受此启发,研究团队基于人工光催化剂在接受电子后发生激发态结构变化,以稳定光生电子并延长其寿命,从而实现光催化的全解水反应。
基于上述理念,研究团队选择了一种名为CFA-Zn的金属有机框架材料(MOFs),成功通过激发态结构变化延长了光生载流子的寿命,进而实现了高效的光催化全解水反应。CFA-Zn由闭壳层的Zn节点连接两种化学上相同但晶体学上不同的柔性有机配体组成。两种晶体学不同的有机配体分别作为电子供体和受体,而Zn的闭壳层结构确保了两种配体间的化学绝缘。以上特征使CFA-Zn能够创造类似植物体中动态柔性的化学微环境,通过激发态结构变化稳定激发态电子并延长其寿命。
图:通过激发态结构扭曲促进电荷分离实现光催化全水分解
近年来,江海龙教授团队围绕催化中心微环境调控方面取得了系列进展。特别是利用MOF催化剂独特的柔性结构,创造柔性自适应催化位点,实现高选择性CO2光还原到CH4(Nat. Catal. 2021, 4, 719等)。本次研究是在前期工作基础上借助动力学结构的MOF光催化剂,抑制了辐射弛豫过程,为光化学反应提供了新的视角与启示。
该论文共同第一作者是中国科大博士后孙康和特任副研究员黄炎,江海龙教授和江俊教授为共同通讯作者。罗毅教授为论文提供了建设性的意见与指导。张群教授团队为超快光谱测试、郑旭升教授团队为同步辐射测试、大连化物所范峰滔研究员为表面光电压测试等提供了重要支持。该研究得到了科技部、国家自然科学基金委、中国科学院、安徽省、中国科大、博士后基金和小米公益基金会的资助。
论文链接:https://www.nature.com/articles/s41557-024-01599-6
(化学与材料科学学院、科研部)
Science Technology
4
中国科大在半导体量子点系统中实现量子干涉与相干俘获
我校郭光灿院士团队在半导体量子点的量子态调控研究中取得重要进展。该团队郭国平教授、李海欧教授与中国科学院物理研究所张建军研究员以及本源量子等合作,在锗硅双量子点系统中实现了量子干涉和相干俘获(CPT)。实验上通过电场调控双量子点系统中的空穴自旋态,不仅观察到了在驱动和非驱动条件下的CPT,还揭示了纵向驱动场对CPT的重要调制效应(暗态调控和奇偶效应)。该工作对基于半导体量子点系统的量子模拟和量子计算具有重要的指导意义。研究成果以“Quantum Interference and Coherent Population Trapping in a Double Quantum Dot” 为题,于8月12日在线发表在国际纳米器件物理知名期刊《Nano Letters》上。
量子干涉是量子力学中波粒二象性的自然表现形式,通常出现在原子尺度上。量子干涉的一个重要现象是CPT,它是由不同跃迁路径之间干涉相消引起的,最早在光学系统的三能级原子中被观察到。在这样的三能级系统中,两个状态与第三个中间状态耦合,当驱动场的频率和相位被精确调谐时,这两个状态就会形成与中间态解耦的叠加态,这样的叠加态被称为“暗态”。因为处于该状态的系统不会对探测场产生响应,导致出现电磁感应透明等有趣的现象。这个现象已经被广泛研究并在诸如光学、超导电路和量子网络等领域中得到了应用。进一步,通过绝热调节暗态的控制参数,可以实现快速状态初始化和受激拉曼绝热通道过程(STIRAP),这在量子信息处理中具有重要意义。
在这项研究中,研究人员展示了如何在半导体双量子点系统中实现CPT。与传统的三能级原子系统不同,在双量子点系统中无需外部驱动场即可实现内在的CPT过程。通过测量泡利自旋阻塞状态下的漏电流,研究人员在无磁场条件下观察到了显著的电流抑制现象,这表明暗态的形成和CPT的发生。进一步,研究人员通过纵向驱动双量子点系统,展示了选择性地创建暗态及其相关CPT过程的调控能力。
该研究还深入探讨了纵向驱动场引发的奇偶效应。研究人员观察到,当系统的驱动频率满足一定条件时,出现了奇数和偶数阶谐波对应的电流增强或抑制现象。这种效应为理解和应用CPT提供了新的视角。此外,研究表明,通过调节纵向驱动场,CPT的信号强度和宽度可以得到有效调控,这为基于CPT的量子门操作提供了一种新的途径。
该研究工作表明,半导体量子点系统不仅是理解量子干涉现象的理想平台,也是实现高精度量子信息处理的有力工具。研究工作清晰地展示了纵向驱动双量子点系统的潜在可调性,开启了基于STIRAP的量子门操作的新途径。有望在未来基于半导体量子点的量子计算和量子模拟技术的实际应用中发挥重要作用。
图1. (a) 双量子点结构扫描电子显微镜图片,横截面示意图在插图中展示。(b) 双量子点系统中单重态和三重态能级以及输运电流形成示意图。(c) 纵向驱动下输运电流随着外磁场B与驱动频率的关系。从测量结果中可以明显地观察到多组共振谱线,这样的奇偶效应是纵向耦合带来调制效应的直接证据。
中国科学院量子信息重点实验室博士生周圆为论文的第一作者。李海欧教授和郭国平教授为论文的共同通讯作者。该工作得到了科技部、国家基金委、中国科学院以及安徽省的资助。李海欧教授得到了中国科学技术大学仲英青年学者项目的资助。
论文链接: https://pubs.acs.org/doi/10.1021/acs.nanolett.4c01781
(中国科学院量子信息重点实验室、物理学院、中国科学院量子信息和量子科技创新研究院、科研部)
Science Technology
5
中国科大发现首例光谱认证的重复性黑洞潮汐撕裂恒星事件
中国科学技术大学天文学系蒋凝、王挺贵、孔旭等组成的研究团队近期发现黑洞潮汐撕裂恒星事件(TDE)事件AT2022dbl的再次爆发,并迅速开展多波段后随观测,表明这极有可能源于超大质量黑洞重复潮汐撕裂同一颗恒星,且每次行为特征与一般典型的TDE事件完全不可区分。这是首个获得光谱认证、也是迄今证据最为确凿的重复性部分撕裂TDE事件,对研究TDE族群和物理有重要意义。相关成果于2024年8月9日以“The Unluckiest Star: A Spectroscopically Confirmed Repeated Partial Tidal Disruption Event AT 2022dbl”为题发表在国际天文期刊《The Astrophysical Journal Letters》上,并被英国知名科普杂志《New Scientist》采访报道。
黑洞潮汐撕裂恒星事件(Tidal Disruption Event, TDE)是指一颗倒霉的恒星在靠近星系中心的大质量黑洞时,被黑洞潮汐撕裂并吸积,产生的强烈电磁耀发。该耀发通常在数十天内快速增亮至峰值,随后数月至数年缓慢变暗。有意思的是,近年来发现有几例TDE(候选体)在数年后又开始重新爆发,它们被认为是重复性TDE事件候选体,黑洞每次仅仅撕裂和吸积部分恒星物质。然而,这些候选体缺乏光变曲线之外的其他强有力观测证据,因此未被同行广泛认可。
图1:紫外与光学多波段的光变曲线,倒三角表示探测的上限。2022年,第一次耀发出现,随后消散以至不可辨认;2年之后,同一位置再次出现相似的耀发。
基于TDE重复性爆发的不断发现,研究团队开始关注并定期更新已知TDE后续光变曲线,以期望尽早发现新的类似事件开展及时后随观测。研究团队今年1月发现TDE AT 2022dbl的再次变亮之后,立即触发了美国雨燕卫星(Swift)和全球望远镜网络(LCOGT)的多波段测光监测,并利用美国帕洛玛天文台的海耳望远镜(P200)拍摄了一条高质量的早期光谱,最终证实了这次爆发起源于TDE。有意思的是,本次耀发的光谱与第一次耀发的光谱具有极其相似的、指示恒星内部核合成元素超丰的发射线特征,这表明两次耀发的吸积物质很有可能来源于同一颗恒星,从而给出重复性撕裂TDE的关键证据(图2)。
图2:光谱的发射线轮廓。从上至下前三条光谱与后两条光谱分别于第一次、第二次耀发期间拍摄。涂蓝色的区域表示两次耀发中极其相似的NIII特征谱线。该谱线可通过电离恒星被瓦解后释放出的物质来产生,其重复出现表明TDE再次发生,而相似的轮廓和强度则暗示参与其中的很可能是同一颗恒星。
基于以上观测事实,研究团队推测,这颗“最倒霉”的恒星可能是被黑洞从双星系统中拽出,被黑洞束缚在一个偏心率极高的椭圆轨道上,并在靠近黑洞时被多次潮汐撕裂并“吸食”。当前光学TDE的研究基本都忽略了重复性部分撕裂TDE事件,然而本研究暗示此类事件概率可能并不低,而且常规TDE中有些其实是部分撕裂事件,因此对于重新认识光学TDE的族群统计和物理过程有重要意义。同时,本研究也说明了TDE长期高频监测的重要性。值得一提的是,TDE也是我校与紫金山天文台共建的墨子巡天望远镜(WFST)的核心科学目标之一,研究团队预期会利用WFST发现更多类似事件,促进我们对TDE的深入理解。
论文第一作者为孔旭教授和蒋凝副研究员联合指导的博士研究生林哲宇,共同通讯作者为蒋凝副研究员、王挺贵教授和孔旭教授。合作单位主要有中国科学院国家天文台、武汉大学、日本广岛大学和京都大学、印度天体物理研究所等。该项研究得到国家自然科学基金委、科技部、中国科学院、中国载人航天工程、唐仲英基金会、安徽省等资助。
论文链接:https://doi.org/10.3847/2041-8213/ad638e
采访报道链接:https://www.newscientist.com/article/2433489-unluckiest-star-may-be-trapped-in-deadly-dance-with-a-black-hole/
(天文学系、科研部)