MicrobiomeStatPlot | 频率分布直方图教程Frequency distribution histogram

学术   2024-11-04 07:04   英国  

频率分布直方图简介

什么是频率分布直方图?

频率分布直方图(histogram)是一种图表,用于显示数据集中各个数值范围内数据出现的频率。它将连续的数据分割为若干个区间(称为bins或箱子),并根据每个区间中的数据点数量绘制矩形柱。柱子的高度表示数据在该区间内出现的频率或次数。频率分布直方图可用于查看数据的分布情况,同时帮助快速了解数据的集中趋势、离散程度等特征。

标签:#微生物组数据分析  #MicrobiomeStatPlot  #频率分布直方图 #R语言可视化 #Frequency distribution histogram

作者:First draft(初稿):Defeng Bai(白德凤);Proofreading(校对):Ma Chuang(马闯) and Jiani Xun(荀佳妮);Text tutorial(文字教程):Defeng Bai(白德凤)

源代码及测试数据链接:

https://github.com/YongxinLiu/MicrobiomeStatPlot/项目中目录 3.Visualization_and_interpretation/FrequencyDistributionHistogram

或公众号后台回复“MicrobiomeStatPlot”领取


频率分布直方图应用案例

这个案例是来自于斯坦福大学Alice Y. Ting团队2021年发表于Nature Communications上的一篇论文。论文题目为:Spatiotemporally-resolved mapping of RNA binding proteins via functional proximity labeling reveals a mitochondrial mRNA anchor promoting stress recovery. https://doi.org/10.1038/s41467-021-25259-2

图 4b|  样本直方图显示了如何应用 130 C/126 C TMT 比率的截止值。

通过“成对 ROC 方法”(图 4a、b 和补充图 7b)和“统计方法”过滤质谱数据。

频率分布直方图R语言实战

源代码及测试数据链接:

https://github.com/YongxinLiu/MicrobiomeStatPlot/

或公众号后台回复“MicrobiomeStatPlot”领取

软件包安装

# 基于CRAN安装R包,检测没有则安装 Installing R packages based on CRAN and installing them if they are not detectedp_list = c("ggplot2", "latex2exp", "readxl", "patchwork", "dplyr", "ggdag",           "dagitty","broom","ggsci","brms" )for(p in p_list){if (!requireNamespace(p)){install.packages(p)}    library(p, character.only = TRUE, quietly = TRUE, warn.conflicts = FALSE)}
# 加载R包 Loading R packagessuppressWarnings(suppressMessages(library(ggplot2)))suppressWarnings(suppressMessages(library(latex2exp)))suppressWarnings(suppressMessages(library(readxl)))suppressWarnings(suppressMessages(library(patchwork)))suppressWarnings(suppressMessages(library(dplyr)))suppressWarnings(suppressMessages(library(ggdag)))suppressWarnings(suppressMessages(library(dagitty)))suppressWarnings(suppressMessages(library(broom)))suppressWarnings(suppressMessages(library(ggsci)))suppressWarnings(suppressMessages(library(brms)))

实战1

参考:

https://mp.weixin.qq.com/s/ypxoFaiZBIaBphcNPS5B_A https://mp.weixin.qq.com/s/nYozxXYdpBXOC4Xh1RWH1A

# 读取数据# Load datafig3a <- read_excel("data/data2.xlsx", sheet = "Fig3a", skip = 1)
# 设置颜色# Set colormypal <- pal_npg("nrc", alpha = 0.7)(10)#mypal <- c("#4DBBD5", "#00A087", "#3C5488")mypal <- c("#d5cabd", "#318eab", "#845ec2")
# 绘图# plotp_Frequency <- ggplot(data=fig3a, aes(x=h2)) +  geom_histogram(aes(fill=type), bins = 100, alpha = 0.7, color = "white") +  scale_fill_manual(values = mypal,                    labels = c(TeX(r"(\textit{h}${^2}$ (       )"),                                 TeX(r"(\textit{h}${^2}$ ()"),                                 TeX(r"(\textit{h}${^2}$ (    )")),                    name = "") +  scale_x_continuous(expand = expansion(mult = c(0,0)),                     breaks = seq(0, 1, 0.2),                     limits = c(0, 1)) +  scale_y_continuous(expand = expansion(mult = c(0,0))) +  labs(y = "Counts",       x = TeX(r"(\textit{h}${^2}$)")) +  geom_vline(xintercept = c(0.27, 0.37, 0.62), linetype = "dashed", color = mypal) +  theme_bw() +  theme(panel.grid = element_blank(),        legend.position = c(0.8, 0.8),        legend.background = element_blank(),        legend.box.background = element_rect(color = "black"),        axis.text = element_text(size = 12),        axis.title = element_text(size = 14, face = "bold"),        plot.margin = margin(10, 10, 10, 10)) +  geom_text(data = data.frame(x = c(0.27, 0.37, 0.62), y = 80, label = c("0.27", "0.37", "0.62")),            aes(x = x, y = y, label = label),            hjust = -0.1, size = 4, color = "black")
# 保存为PDF# Save as PDFggsave(filename = "results/Frequency_distribution_histogram1.pdf", plot = p_Frequency, width = 10, height = 6)

实战2

堆叠上下频率分布直方图

https://www.andrewheiss.com/blog/2021/12/18/bayesian-propensity-scores-weights/ https://mp.weixin.qq.com/s/ezs2oNKj09RRSEdvqsfiNQ

# 载入数据# Load datadata <- read.table("data/data_hisogram.txt", header = TRUE, sep = "\t", comment.char = "")
# 绘制上下两轴直方图# Draw a histogram of the upper and lower axes=p_Frequency2 <- ggplot(data,aes(x = value, fill = variable))+  geom_histogram(data = filter(data, variable == "group1"),                 aes(y = ..count..),                 binwidth = 100    #aes(fill=type),#直方图函数(histgram)                 #bins = 100    )+  geom_histogram(data = filter(data, variable == "group2"),                 aes(y = ..count..*(-1)),                 binwidth = 100    #aes(fill=type),#直方图函数(histgram)                 #bins = 100    )+  scale_x_continuous(limits = c(0,1100),                                         breaks = c(0,250,500,750,1000),                                         expand = c(0,0))+    scale_y_continuous(limits = c(-3.5,5.5),                                         breaks = seq(-4,6,1),                               labels = abs(seq(-4,6,1)))+  theme_classic(base_size = 15)+    theme(panel.border = element_rect(size = 1,fill='transparent'),                legend.position = 'none',          axis.text = element_text(colour = 'black'))+    geom_vline(xintercept = 700,linetype=2,cex=1)+    scale_fill_manual(values = c('grey60','#2AC643'))#p_Frequency2# 保存为PDF# Save as PDFggsave(filename = "results/Frequency_upper_lower1.pdf", width = 10, height = 6)

# 绘制上下多组频率分布直方图# Draw multiple groups of frequency distribution histograms above and belownets <- read.csv("data/mosquito_nets.csv")mosquito_dag <- dagify(  malaria_risk ~ net + income + health + temperature,  net ~ income + health + temperature,  health ~ income,  exposure = "net",  outcome = "malaria_risk",  coords = list(x = c(malaria_risk = 7, net = 3, income = 4, health = 5, temperature = 6),                y = c(malaria_risk = 2, net = 2, income = 3, health = 1, temperature = 3)),  labels = c(malaria_risk = "Risk of malaria", net = "Mosquito net", income = "Income",             health = "Health", temperature = "Nighttime temperatures",             resistance = "Insecticide resistance"))adjustmentSets(mosquito_dag)#> { health, income, temperature }
# 创建使用混杂因素预测治疗状况的模型# Create model that predicts treatment status using confoundersmodel_treatment_freq <- glm(net ~ income + temperature + health,                            data = nets,                            family = binomial(link = "logit"))
# 计算治疗权重的倾向得分和逆概率# Calculate propensity scores and inverse probability of treatment weightsnets_with_weights <- augment(model_treatment_freq, nets,                             type.predict = "response")nets_with_weights <- as.data.frame(nets_with_weights)colnames(nets_with_weights)[colnames(nets_with_weights) == ".fitted"] <- "propensity"nets_with_weights = nets_with_weights %>%  mutate(iptw = (net_num / propensity) + ((1 - net_num) / (1 - propensity)))
# 评估治疗对结果的影响# Estimates the effect of treatment on outcomemodel_outcome_freq <- lm(malaria_risk ~ net,                         data = nets_with_weights,                         weights = iptw)
# `net` 的系数应为 -10ish# Coefficient for `net` should be -10ishtidy(model_outcome_freq)# 自定义颜色方案 (Customize color palette)isfahan_colors <- c("#4DBBD5B2", "#3C5488B2")
# 绘图# Plotp_Frequency3 <- ggplot() +  geom_histogram(data = filter(nets_with_weights, net_num == 1),                 bins = 50, aes(x = propensity, weight = iptw),                 fill = colorspace::lighten(isfahan_colors[1], 0.35)) +  geom_histogram(data = filter(nets_with_weights, net_num == 0),                 bins = 50, aes(x = propensity, weight = iptw, y = -after_stat(count)),                 fill = colorspace::lighten(isfahan_colors[2], 0.35)) +  geom_histogram(data = filter(nets_with_weights, net_num == 1),                 bins = 50, aes(x = propensity),                 fill = isfahan_colors[1]) +  geom_histogram(data = filter(nets_with_weights, net_num == 0),                 bins = 50, aes(x = propensity, y = -after_stat(count)),                 fill = isfahan_colors[2]) +  annotate(geom = "label", x = 0.8, y = 70, label = "Treated (actual)",           fill = isfahan_colors[1], color = "white", hjust = 1, size = 4) +  annotate(geom = "label", x = 0.8, y = 90, label = "Treated (IPTW pseudo-population)",           fill = colorspace::lighten(isfahan_colors[1], 0.35), color = "white", hjust = 1, size = 4) +  annotate(geom = "label", x = 0.8, y = -60, label = "Untreated (actual)",           fill = isfahan_colors[2], color = "white", hjust = 1, size = 4) +  annotate(geom = "label", x = 0.8, y = -80, label = "Untreated (IPTW pseudo-population)",           fill = colorspace::lighten(isfahan_colors[2], 0.35), color = "white", hjust = 1, size = 4) +  geom_hline(yintercept = 0, color = "white", linewidth = 0.25) +  scale_y_continuous(label = abs) +  coord_cartesian(xlim = c(0.1, 0.8), ylim = c(-80, 100)) +  labs(x = "Propensity", y = "Count") +  theme_classic(base_size = 15)+    theme(panel.border = element_rect(size = 1,fill='transparent'),                legend.position = 'none',          axis.text = element_text(colour = 'black'))
# 保存为PDF# Save as PDFggsave(filename = "results/Frequency_upper_lower2.pdf", width = 10, height = 6)
# 组合图library(cowplot)width = 89height = 59p0 = plot_grid(p_Frequency2, p_Frequency3, labels = c("A", "B"), ncol = 2)ggsave("results/Frequency_distribution_histogram2.pdf", p0, width = width * 3, height = height * 2, units = "mm")

使用此脚本,请引用下文:

Yong-Xin Liu, Lei Chen, Tengfei Ma, Xiaofang Li, Maosheng Zheng, Xin Zhou, Liang Chen, Xubo Qian, Jiao Xi, Hongye Lu, Huiluo Cao, Xiaoya Ma, Bian Bian, Pengfan Zhang, Jiqiu Wu, Ren-You Gan, Baolei Jia, Linyang Sun, Zhicheng Ju, Yunyun Gao, Tao Wen, Tong Chen. 2023. EasyAmplicon: An easy-to-use, open-source, reproducible, and community-based pipeline for amplicon data analysis in microbiome research. iMeta 2: e83. https://doi.org/10.1002/imt2.83

Copyright 2016-2024 Defeng Bai baidefeng@caas.cn, Chuang Ma 22720765@stu.ahau.edu.cn, Jiani Xun 15231572937@163.com, Yong-Xin Liu liuyongxin@caas.cn

宏基因组推荐
本公众号现全面开放投稿,希望文章作者讲出自己的科研故事,分享论文的精华与亮点。投稿请联系小编(微信号:yongxinliu 或 meta-genomics)

猜你喜欢

iMeta高引文章 fastp 复杂热图 ggtree 绘图imageGP 网络iNAP
iMeta网页工具 代谢组MetOrigin 美吉云乳酸化预测DeepKla
iMeta综述 肠菌菌群 植物菌群 口腔菌群 蛋白质结构预测

10000+:菌群分析 宝宝与猫狗 梅毒狂想曲 提DNA发Nature

系列教程:微生物组入门 Biostar 微生物组  宏基因组

专业技能:学术图表 高分文章 生信宝典 不可或缺的人

一文读懂:宏基因组 寄生虫益处 进化树 必备技能:提问 搜索  Endnote

扩增子分析:图表解读 分析流程 统计绘图

16S功能预测   PICRUSt  FAPROTAX  Bugbase Tax4Fun

生物科普:  肠道细菌 人体上的生命 生命大跃进  细胞暗战 人体奥秘  

写在后面

为鼓励读者交流快速解决科研困难,我们建立了“宏基因组”讨论群,己有国内外6000+ 科研人员加入。请添加主编微信meta-genomics带你入群,务必备注“姓名-单位-研究方向-职称/年级”。高级职称请注明身份,另有海内外微生物PI群供大佬合作交流。技术问题寻求帮助,首先阅读《如何优雅的提问》学习解决问题思路,仍未解决群内讨论,问题不私聊,帮助同行。

点击阅读原文


宏基因组
宏基因组/微生物组是当今世界科研最热门的研究领域之一,为加强本领域的技术交流与传播,推动中国微生物组计划发展,中科院青年科研人员创立“宏基因组”公众号,目标为打造本领域纯干货技术及思想交流平台。
 最新文章