读完需要
速读仅需 2 分钟
请尊重原创劳动成果
转载请注明本文链接
及文章作者:机器学习之心
摘要:创新首发!秋日私语!LightGBM+BO-Transformer-GRU多变量回归交通流量预测(Matlab)
1
基本介绍
1.Matlab实现LightGBM+BO-Transformer-GRU多变量回归预测,LightGBM+BO-Transformer-GRU/LightGBM+Bayes-Transformer-GRU(程序可以作为一区级论文代码支撑,目前尚未发表);
2.LightGBM用于提取数据关键特征后输入BO-Transformer-GRU模型之中,贝叶斯优化参数为:学习率,GRU隐含层节点,正则化参数,运行环境为Matlab2023b及以上;
3.数据集excel,交通流数据,输入多个特征,输出单个变量,多变量回归预测,main.m为主程序,运行即可,所有文件放在一个文件夹;
4.命令窗口输出R2、MSE、RMSE、MAE、MAPE、MBE等多指标评价。
购买后可加博主QQ1153460737咨询交流。注意:其他非官方渠道购买的盗版代码不含模型咨询交流服务,大家注意甄别,谢谢。
2
数据集
2.2
运行效果
完整代码链接:https://mbd.pub/o/bread/mbd-ZpuXmJlx
也可扫描二维码:
3
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 导入数据
res = xlsread('数据集.xlsx');
%% 加载工具箱
loadlibrary('lib_lightgbm.dll', 'c_api.h')
%% 数据分析
num_size = 0.7; % 训练集占数据集比例
outdim = 1; % 最后一列为输出
num_samples = size(res, 1); % 样本个数
%res = res(randperm(num_samples), :); % 打乱数据集(不希望打乱时,注释该行)
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim; % 输入特征维度
%% 划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);
P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);
%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);
[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);
%% 矩阵转置
p_train = p_train'; p_test = p_test';
t_train = t_train'; t_test = t_test';
%% 加载数据到 GBM
pv_train = lgbmDataset(p_train);
setField(pv_train, 'label', t_train);
4
嗯,细心的你会发现:https://mbd.pub/o/slowtrain/work
博客专家认证,机器学习领域创作者,2023博客之星TOP50,主做机器学习和深度学习时序、回归、分类、聚类和降维等程序设计和案例分析。科研课题模型定制/横向项目模型仿真/职称学术论文辅导/模型程序讲解均可联系本人唯一QQ1153460737(其他均为盗版,注意甄别)
技术交流群:购买博主任意代码或分享博主博文到任意三方平台后即可添加博主QQ进群