中国科学院物理研究所 汪力 编译自Rachel Berkowitz. Physics,July 19,2024
本文选自《物理》2024年第10期
在许多超导体中,施加足够强的磁场会使超导电子产生电流涡旋,它们随着稳定的屏蔽电流一起运动。为了进一步了解这些涡旋的动力学行为,研究人员已经将涡旋的轨迹可视化:它们在电磁驱动下以近太赫兹频率振荡。通过观察皮秒时间尺度下的涡旋运动,发现在这些条件下,涡旋的有效质量是预期的1/10000。这一结果对于发展强电流超导器件可能具有重要意义。
当超导体中传输的电流超过某一极值时超导电性将被破坏,这是强电流器件发展的一个重要问题。许多研究人员认为涡旋(在没有外部磁场的情况下也会形成)是这种所谓的“电流诱导淬灭”的来源。但是,确定涡旋如何导致超导电性淬灭需要更深入地了解涡旋,这首先需要测量它们的运动。
几年前,东京大学的Sachiko Nakamura和她的同事开发了一种检测超导材料氮化铌中涡旋运动的技术:在超导薄膜中注入电流以产生涡旋,然后用红外脉冲照射薄膜,分析从薄膜出射的脉冲,可以发现脉冲中包括一个频率是输入频率两倍(二次谐波)的分量,该团队将二次谐波的产生归因于一维涡旋振荡。
Nakamura和她的同事们现在已经把这一技术发展到测量二维涡旋运动,研究人员制备了38 nm厚的铁基超导体FeSe0.5Te0.5 (FST)薄膜,并将其冷却到超导转变温度(16.5 K)以下。由线圈产生的磁场在薄膜中引起涡旋,同时诱导一个直径几毫米的环形屏蔽电流。与之前的实验类似,研究人员用20 ps红外 (0.3 THz)脉冲照射薄膜,并在透射光谱中检测到二次谐波,包括平行和垂直于入射脉冲偏振的两个偏振分量。
他们使用约1 mm尺寸的光束探测屏蔽电流环附近的区域,然后通过分析透射波形,以重构该处一个典型涡旋的运动。该团队发现了一个振荡的、大致抛物线形的轨迹,而不是一条直线。这种轨迹来源于磁性涡旋和屏蔽电流之间的相互作用。Nakamura说,发现这种运动是这项工作中最令人兴奋的部分,“感觉就像我们在直接观察涡旋的二维运动”。
得到的测量数据表明,这些涡旋的移动速度高达300 km/s,比预计的要快得多。在日本京都大学研究太赫兹技术的Itsuhiro Kakeya表示,根据其惯性得出的涡旋有效质量远低于预期。他说:“一个涡旋的质量过去被认为相当于10000个自由电子,但这些结果表明,它与单个自由电子具有相同的数量级,令人非常惊讶。”这一发现支持了一种观点,即快速振荡的涡旋会留下许多最初被束缚在其中的非超导电子,它们并没有参与振荡过程。Nakamura指出,这种情况意味着,在使用涡旋理论处理涡旋运动问题时,可以排除那些非超导电子的影响。
Kakeya认为,在皮秒时间尺度上实现超导涡旋运动的可视化是一项非常重要的成就。在德国多特蒙德技术大学研究关联量子材料的王哲对此表示赞同。他说:“在文献中并不经常报道太赫兹二次谐波的产生。”这项新研究不仅报道了在一类新型超导体中发生的这一现象,还利用它来研究涡旋动力学等特性。Kakeya说:“由于其他实验方法已经观察到此类材料的一些独特性质,我们希望它们与这种小涡旋质量之间的关系能够得到阐明。”
我对吴有训、叶企孙、萨本栋先生的点滴回忆 | 《物理》50年精选文章
国立西南联合大学物理系——抗日战争时期中国物理学界的一支奇葩(Ⅰ) | 《物理》50年精选文章
国立西南联合大学物理系——抗日战争时期中国物理学界的一支奇葩(Ⅱ) | 《物理》50年精选文章
原子核裂变的发现:历史与教训——纪念原子核裂变现象发现60周年 | 《物理》50年精选文章
回顾与展望——纪念量子论诞生100周年 | 《物理》50年精选文章
中国理论物理学家与生物学家结合的典范——回顾汤佩松和王竹溪先生对植物细胞水分关系研究的历史性贡献(上) |《物理》50年精选文章
中国理论物理学家与生物学家结合的典范——回顾汤佩松和王竹溪先生对植物细胞水分关系研究的历史性贡献(下) |《物理》50年精选文章
为了忘却的怀念——回忆晚年的叶企孙 | 《物理》50年精选文章
从分子生物学的历程看学科交叉——纪念金螺旋论文发表50周年 | 《物理》50年精选文章
美丽是可以表述的——描述花卉形态的数理方程 | 《物理》50年精选文章
一本培养了几代物理学家的经典著作 ——评《晶格动力学理论》 |《物理》50年精选文章
熵非商——the Myth of Entropy |《物理》50年精选文章
普渡琐记——从2010年诺贝尔化学奖谈起 |《物理》50年精选文章
天气预报——由经验到物理数学理论和超级计算 | 《物理》50年精选文章
纪念Bohr的《伟大的三部曲》发表100周年暨北京大学物理专业建系100周年 | 《物理》50年精选文章
凝聚态材料中的拓扑相与拓扑相变——2016年诺贝尔物理学奖解读 |《物理》50年精选文章
通用量子计算机和容错量子计算——概念、现状和展望 | 《物理》50年精选文章
谈书说人之一:《理论物理学教程》是怎样写成的?| 《物理》50年精选文章
时空奇点和黑洞 ——2020年诺贝尔物理学奖解读 |《物理》50年精选文章
凝聚态物理学的新篇章——超越朗道范式的拓扑量子物态 | 《物理》50年精选文章
对于麦克斯韦方程组,洛伦兹变换的低速极限是伽利略变换吗?| 《物理》50年精选文章