1.OsNL1调控高位分蘖的伸长
图1:nl1突变体展示出高位分蘖增加且OsNL1在高位分蘖幼芽中高表达
2.HAN结构域介导了OsNL1与OsTOPLESS2的互作
图2:HAN结构域介导OsNL1与OsTOPLESS2的互作
3.OsTOPLESS2参与水稻高位分蘖伸长
图3:OsTOPLESS2突变导致高位分蘖数目增加
4.OsNL1与OsTOPLESS2相互作用抑制OsMOC1/3基因表达
图4:OsNL1通过OsMOC1调控高位分蘖的伸长
图5:OsNL1通过OsMOC3调控高位分蘖的伸长
图6:水稻高位分蘖伸长调控机制的模式图
论文链接:https://doi.org/10.1111/pbi.14547
参考文献:
Barbier, F.F., Dun, E.A., Kerr, S.C., Chabikwa, T.G. and Beveridge, C.A. (2019) An update on the signals controlling shoot branching. Trends Plant Sci. 24, 220–236.
Behringer, C. and Schwechheimer, C. (2015) B-GATA transcription factors – insights into their structure, regulation, and role in plant development. Front. Plant Sci. 6, 1–12.
Causier, B., Ashworth, M., Guo, W. and Davies, B. (2012) The TOPLESS interactome: a framework for gene repression in arabidopsis. Plant Physiol. 158, 423–438.
Doebley, J., Stec, A. and Hubbardt, L. (1997) The evolution of apical dominance in maize. Nature 386, 485–488.
Fang, Z., Ji, Y., Hu, J., Guo, R., Sun, S. and Wang, X. (2020) Strigolactones and Brassinosteroids Antagonistically Regulate the Stability of the D53-OsBZR1 Complex to Determine FC1 Expression in Rice Tillering. Mol. Plant. 13, 586–597.
Gonzalez-Grandıo, E., Pajoro, A., Franco-Zorrilla, J.M., Tarancon, C., Immink, R.G.H. and Cubasa, P. (2017) Abscisic acid signaling is controlled by a BRANCHED1/HD-ZIP I cascade in Arabidopsis axillary buds. Proc. Natl. Acad. Sci. 114, E245–E254.
Guo, S., Xu, Y., Liu, H., Mao, Z., Zhang, C., Ma, Y., Zhang, Q. et al. (2013) The interaction between OsMADS57 and OsTB1 modulates rice tillering via DWARF14. Nat. Commun. 4, 1566.
He, A., Jiang, M., Nie, L., Man, J. and Peng, S. (2023) Effects of source-sink regulation and nodal position of the main crop on the sprouting of regenerated buds and grain yield of ratoon rice. Front. Plant Sci. 14, 1043354.
Janssen, B.J., Drummond, R.S. and Snowden, K.C. (2014) Regulation of axillary shoot development. Curr. Opin. Plant Biol. 17, 28–35.
Jiang, L., Liu, X., Xiong, G., Liu, H., Chen, F., Wang, L., Meng, X. et al. (2013) DWARF 53 acts as a repressor of strigolactone signalling in rice. Nature 504, 401–405.
Kagale, S. and Rozwadowski, K. (2011) EAR motif-mediated transcriptional repression in plants: an underlying mechanism for epigenetic regulation of gene expression. Epigenetics 6, 141–146.
Ke, J., Ma, H., Gu, X., Thelen, A., Brunzelle, J.S., Li, J., Xu, H.E. et al. (2015) Structural basis for recognition of diverse transcriptional repressors by the TOPLESS family of corepressors. Sci. Adv. 1, e1500107.
Krogan, N.T., Hogan, K. and Long, J.A. (2012) APETALA2 negatively regulates multiple floral organ identity genes in Arabidopsis by recruiting the corepressor TOPLESS and the histone deacetylase HDA19. Development 139, 4180–4190.
Li, X., Qian, Q., Fu, Z., Wang, Y., Xiong, G., Zeng, D., Wang, X. et al. (2003) Control of tillering in rice. Nature 422, 618–621.
Li, S., Tian, Y., Wu, K., Ye, Y., Yu, J., Zhang, J., Liu, Q. et al. (2018) Modulating plant growth–metabolism coordination for sustainable agriculture. Nature 560, 595–600.
Lu, Z., Yu, H., Xiong, G., Wang, J., Jiao, Y., Liu, G., Jing, Y. et al. (2013) Genome-wide binding analysis of the transcription activator ideal plant architecture1 reveals a complex network regulating rice plant architecture. Plant Cell 25, 3743–3759.
Ma, H., Duan, J., Ke, J., He, Y., Gu, X., Xu, T.-H., Yu, H. et al. (2017) A D53 repression motifinduces oligomerization of TOPLESS corepressors and promotes assembly of a corepressor-nucleosome complex. Sci. Adv. 3, e1601217.
Minakuchi, K., Kameoka, H., Yasuno, N., Umehara, M., Luo, L., Kobayashi, K., Hanada, A. et al. (2010) FINE CULM1 (FC1) works downstream of strigolactones to inhibit the outgrowth of axillary buds in rice. Plant Cell Physiol. 51, 1127–1135.
Patil, S.B., Barbier, F.F., Zhao, J., Zafar, S.A., Sun, Y., Fang, J., Perez-Garcia, M.- D. et al. (2022) Sucrose promotes D53 accumulation and tillering in rice. New Phytol. 234, 122–136. Schwechheimer, C., SchrÖder, P.M. and Blaby-Haas, C.E. (2022) Plant GATA factors: Their biology, phylogeny, and phylogenomics. Annu. Rev. Plant Biol. 73, 123–148.
Shao, G., Lu, Z., Xiong, J., Wang, B., Jing, Y., Meng, X., Liu, G. et al. (2019) Tiller bud formation regulators MOC1 and MOC3 cooperatively promote tiller bud outgrowth by activating FON1 expression in rice. Mol. Plant 12, 1090– 1102.
Somssich, M., Je, B.I., Simon, R.D. and Jackson, D. (2016) CLAVATA-WUSCHEL signaling in the shoot meristem. Development 143, 3238–3248.
Takeda, T., Suwa, Y., Suzuki, M., Kitano, H., Ueguchi-Tanaka, M., Ashikari, M., Matsuoka, M. et al. (2003) The OsTB1 gene negatively regulates lateral branching in rice. Plant J. 33, 513–520.
Wang, L., Yin, H., Qian, Q., Yang, J., Huang, C., Hu, X. and Luo, D. (2009) NECK LEAF 1, a GATA type transcription factor, modulates organogenesis by regulating the expression of multiple regulatory genes during reproductive development in rice. Cell Res. 19, 598–611.
Wang, L., Ming, L., Liao, K., Xia, C., Sun, S., Chang, Y., Wang, H. et al. (2021) Bract suppression regulated by the miR156/529-SPLs-NL1-PLA1 module is required for the transition from vegetative to reproductive branching in rice. Mol. Plant 14, 1–17.
Whipple, C.J., Hall, D.H., DeBlasio, S., Taguchi-Shiobara, F., Schmidt, R.J. and Jacksona, D.P. (2010) A conserved mechanism of bract suppression in the grass family. Plant Cell 22, 565–578.
Wu, K., Wang, S., Song, W., Zhang, J., Wang, Y., Liu, Q., Yu, J. et al. (2020) Enhanced sustainable green revolution yield via nitrogen-responsive chromatin modulation in rice. Science 367, 1–9.
Xia, T., Chen, H., Dong, S., Ma, Z., Ren, H., Zhu, X., Fang, X. et al. (2020) OsWUS promotes tiller bud growth by establishing weak apical dominance in rice. Plant J. 104, 1635–1647.
Yao, C. and Finlayson, S.A. (2015) Abscisic acid is a general negative regulator of Arabidopsis axillary bud growth. Plant Physiol. 169, 611–626.
Yoshida, A., Ohmori, Y., Kitano, H., Taguchi-Shiobara, F. and Hirano, H.-Y. (2012) Aberrant spikelet and panicle1, encoding a TOPLESS-related transcriptional co-repressor, is involved in the regulation of meristem fate in rice. Plant J. 70, 327–339.
Yu, X., Tao, X., Liao, J., Liu, S., Xu, L., Yuan, S., Zhang, Z. et al. (2022) Predicting potential cultivation region and paddy area for ratoon rice production in China using Maxent model. Field Crop Res 275, 108372.
Zhang, X., Zhou, Y., Ding, L., Wu, Z., Liu, R. and Meyerowitz, E.M. (2013) Transcription repressor HANABA TARANU controls flower development by integrating the actions of multiple hormones, floral organ specification genes, and GATA3 Family Genes in Arabidopsis. Plant Cell 25, 83–101.
为了能更有效地帮助广大的科研工作者获取相关信息,植物生物技术Pbj特建立微信群,Plant Biotechnology Journal投稿以及文献相关问题、公众号发布内容及公众号投稿问题都会集中在群内进行解答,同时鼓励在群内交流学术、碰撞思维。为了保证群内良好的讨论环境,请先添加小编微信,扫描二维码添加,之后我们会及时邀请您进群。小提示:添加小编微信时及进群后请务必备注学校或单位+姓名,PI在结尾注明,我们会邀请您进入PI群。