DOI: https://doi.org/10.1016/j.jpowsour.2024.235821
原文链接:https://www.sciencedirect.com/science/article/pii/S0378775324017737
对于电极材料而言,通过元素掺杂、界面改性等可以有效提升电化学性能,其中掺杂过渡金属(Fe、Co、Ni)原位还原析出纳米颗粒是非常可行的策略,在CO2电解、H2O电解中具有广泛的应用。为了进一步提升性能,对于电极结构,通过电纺丝构筑纳米纤维结构,之后原位析出纳米颗粒,可以进一步提升性能,关于此策略,推荐大家阅读John Irvine教授的两篇文章:
M. Xu, C. Liu, A. B. Naden, H. Früchtl, M. Bühl, J. T. S. Irvine, Electrochemical Activation Applied to Perovskite Titanate Fibers to Yield Supported Alloy Nanoparticles for Electrocatalytic Application. Small 2023, 19, 2204682. https://doi.org/10.1002/smll.202204682;
Xu, M., Cao, R., Wu, S., Lee, J., Chen, D. and Irvine, J.T., 2023. Nanoparticle exsolution via electrochemical switching in perovskite fibers for solid oxide fuel cell electrodes. Journal of Materials Chemistry A, 11(24), pp.13007-13015.
在本篇工作中,研究者通过静电纺丝直接获得 Ni 掺杂的 Sr0.95Ti0.3Fe0.7O3-δ/Ce0.9Gd0.1O2-δ(表示为 STFN/GDCN)纳米纤维复合材料。然后,通过 10%H2/Ar 还原将 Ni 纳米颗粒双脱溶,原位锚定在 STFN 和 GDCN 表面(表示为 Ni@STFN/GDCN),用作 SOEC 阴极。这种复合阴极不仅有利于 CO2 还原反应 (CO2RR) 速率,而且还能抵抗热聚集和碳沉积。Ni@STFN/GDCN 阴极在纯 CO2 中工作,施加电压为 1.6 V,电流密度达到 1.85 A cm−2,超过了其他工作中报告的大多数先进电极。此外,在电流密度为 1.5 A cm−2 的 CO2RR 测试中,180 小时内没有明显的电压波动,表现出优异的长期稳定性。测试结果表明,锚固在异质复合纳米纤维上的原位双脱溶纳米金属是一种可靠、稳定的 SOEC 阴极,可用于直接、高效的 CO2电解。
Fig. 1. (a) Schematic of the fabrication of dual-exsolved Ni@STFN/GDCN composite nanofibers. SEM images of 1: 1 STFN/GDCN composite nanofibers (b) before and (c) after reduction. (d) XRD patterns of STFN/GDCN and Ni@STFN/GDCN samples.
Fig. 2. (a) HRTEM image of the reduced Ni@STFN/GDCN composite nanofiber. Squares A, B and C are the partial magnification for the selected regions of TEM images. (b) HAADF-STEM image and EDS mappings of the reduced nanofiber.
Fig. 3. XPS spectra of (a) Ni 2p, (b) Fe 2p, (c) Ce 3d and (d) O 1s for STFN/GDCN and Ni@STFN/GDCN, (e)Thermogravimetric analyses for the weight variation of STFN/GDCN and Ni@STFN/GDCN exposing in air from room temperature to 800 °C.
Fig. 4. (a) The cross-section image of single cell sandwich structure evaluated by SEM, and the electrochemical performance evaluated at 800 °C by (b) I-V-P curves, (c) EIS spectra, (d) DRT analysis of the EIS spectra shown in (c).
Fig. 5. I-V-P curves (a–b) and EIS spectra (c–d) of cells with STFN/GDCN and Ni@STFN/GDCN as electrodes and testing under different H2 partial pressures at 800 °C, and the corresponding DRT analysis (e) and (f) originated from the EIS spectra in (c) and (d).
Fig. 6. CO2 electrolysis performance of SOECs with STFN/GDCN and Ni@STFN/GDCN as electrodes testing in pure CO2 and at 800 °C. (a) I-V curves, (b) Comparison of the CO2 electrolysis performance with other advance electrode testing at 1.6 V voltage, (c) EIS spectra, (d) potentiostatic tests at different voltages, (e) CO production rate and Faradaic efficiency with applying voltage from 1.0 V to 1.6 V.
Fig. 7. (a) Long-term stability of Ni@STFN/GDCN electrode for CO2RR test with a current density of 1.5 A cm−2 at 800 °C, (b) EIS spectra before and after test, (c) Raman and (d) XPS analysis after test, SEM images of (e) Ni@STFN/GDCN electrode and (f) the cross section of cathode/electrolyte/anode structure, (g) schematic of Ni@STFN/GDCN electrode for CO2RR.
总而言之,采用静电纺丝相转化和原位脱溶技术制备了以Ni@STFN/GDCN纳米纤维为阴极的LSF/GDC阳极负载SOEC。将其用于直接电解CO2,获得了良好的电化学活性和稳定性。Ni纳米颗粒从STFN和GDCN表面双脱溶,不仅增加了氧空穴浓度,而且加速了直接电解CO2的催化活性。Ni@STFN/GDCN电极对CO2电解表现出优异的催化性能,并在高电流密度下具有高稳定性。这项工作表明,具有异质结构的复合纳米纤维为未来高性能、稳定的CO2电解阴极材料提供了一种可行的设计。