[1] LeCun Y,Bengio Y,Hinton G. Nature,2015,521:436
[2] McCulloch W S,Pitts W. Bull. Math. Biophys.,1943,5:115
[3] Rosenblatt F. Psycholog. Rev.,1958,65:386
[4] Hubel D H,Wiesel T N. J. Physiol.,1959,148:574
[5] Hopfield J J. Proc. Natl. Acad. Sci. USA,1982,79:2554
[6] Ackley D H,Hinton G E,Sejnowski T J. Cogn. Sci.,1985,9:147
[7] Amit D J,Gutfreund H,Sompolinsky H. Phys. Rev. A,1985,32:1007
[8] Popular Science Background. the Nobel Prize in Physics 2024.https://www. nobelprize. org/uploads/2024/11/popular-physicsprize2024-3.pdf
[9] Hebb D. The Organization of Behavior. A Neuropsychological Theory. Wiley,1949
[10] Amari S I. IEEE Transac. Comput.,1972,100:1197
[11] Hopfield J J,Tank D W. Biol. Cybern.,1985,52:141
[12] Ramsauer H,Schäfl B,Lehner J et al. 2020,arXiv:2008.02217
[13] Nowlan S,Hinton G E. Evaluation of Adaptive Mixtures of Competing Experts. In:Adv. Neural Inf. Process. Syst.3,1990
[14] Srivastava N,Hinton G,Krizhevsky A et al. J. Mach. Learn. Res.,2014,15:1929
[15] Hinton G E,Salakhutdinov R R. Science,2006,313:504
[16] Krizhevsky A,Sutskever I,Hinton G E. Adv. Neural Inf. Process. Syst.,2012,25:1106
[17] Hinton G E. Neural Comput.,2002,14:1771
[18] Tierney L. Ann. Statist.,1994,22:1701
[19] Salakhutdinov R,Hinton G. Deep Boltzmann Machines. In:Artificial intelligence and statistics. PMLR,2009. p.448
[20] Jaitly N,Hinton G. Learning a Better Representation of Speech Soundwaves using Restricted Boltzmann Machines. In:2011 IEEE International Conference on Acoustics,Speech and Signal
Processing (ICASSP). IEEE,2011. p.5884
[21] Carleo G,Troyer M. Science,2017,355:602
[22] Silver D,Huang A,Maddison C J et al. Nature,2016,529:484
[23] Jumper J,Evans R,Pritzel A et al. Nature,2021,596:583
[24] Abramson J,Adler J,Dunger J et al. Nature,2024,1:
[25] Udrescu S M,Tegmark M. Sci. Adv.,2020,6:eaay2631
[26] Burger B,Maffettone P M,Gusev V V et al. Nature,2020,583:237
[27] Martin R M. Electronic Structure:Basic Theory and Practical Methods. Cambridge university press,2020
[28] Kohn W,Sham L J. Phys. Rev.,1965,140:A1133
[29] Kohn W. Phys. Rev. Lett.,1996,76:3168
[30] Das S,Kanungo B,Subramanian V et al. Large-scale Materials Modeling at Quantum Accuracy:Ab Initio Simulations of Quasicrystals and Interacting Extended Defects in Metallic Alloys. In:Proceedings of the International Conference for High Performance Computing,Networking,Storage and Analysis. 2023. p.1
[31] Stocks R,Vallejo J L G,Yu F C et al. Breaking the Million Electron and 1 EFLOP/s Barriers:Biomolecular-Scale Ab Initio Molecular Dynamics Using MP2 Potentials. In:Proceedings of the International Conference for High Performance Computing,
Networking,Storage,and Analysis. 2024. p.1
[32] Perdew J P,Schmidt K. Jacob’s Ladder of Density Functional Approximations for the Exchange-correlation Energy. In:AIP Conference Proceedings. American Institute of Physics,2001. p.1
[33] Behler J,Parrinello M. Phys. Rev. Lett.,2007,98:146401
[34] Zhang L,Han J,Wang H et al. Phys. Rev. Lett.,2018,120:143001
[35] Batzner S,Musaelian A,Sun L et al. Nat. Commun.,2022,13:2453
[36] Liao Y L,Wood B M,Das A et al. EquiformerV2:Improved Equivariant Transformer for Scaling to Higher-Degree Representations. In:the Twelfth International Conference on Learning
Representations
[37] Merchant A,Batzner S,Schoenholz S S et al. Nature,2023,624:80
[38] Barroso-Luque L,Shuaibi M,Fu X et al. 2024 ,arXiv :2410.12771
[39] Li H,Wang Z,Zou N et al. Nat. Comput. Sci.,2022,2:367
[40] Li H,Wang Z,Zou N L et al. 2021,arXiv:2104.03786
[41] Xie T,Grossman J C. Phys. Rev. Lett.,2018,120:145301
[42] Geiger M,Smidt T. 2022,arXiv:2207.09453
[43] Gong X,Li H,Zou N et al. Nat. Commun.,2023,14:2848
[44] Li H,Tang Z,Gong X et al. Nat. Comput. Sci.,2023,3:321
[45] Tang Z,Li H,Lin P et al. Nat. Commun.,2024,15:8815
[46] Li H,Tang Z,Fu J et al. Phys. Rev. Lett.,2024,132:096401
[47] Mortazavi B. Adv. Energy Mater.,2024,2403876:
[48] Unke O,Bogojeski M,Gastegger M et al. Adv. Neural Inf. Processing Syst.,2021,34:14434
[49] Zhong Y,Yu H,Su M et al. npj Comput. Mater.,2023,9:182
[50] Yu H,Xu Z,Qian X et al. Efficient and Equivariant Graph Networks for Predicting Quantum Hamiltonian. In:International Conference on Machine Learning. PMLR,2023. p.40412
[51] Wang Y,Li Y,Tang Z et al. Sci. Bull.,2024,69:30