清茶会丨何清瑜:布尔依赖逻辑

文摘   2024-10-21 17:24   北京  

清 茶 会


何清瑜
Qingyu He:


布尔依赖逻辑

Boolean dependence logic


摘要: 

Baltag and van Benthem[1] introduced a logic of functional dependence (LFD) with local dependence formulas and dependence quantifiers, which can be seen both as a first-order and a modal logic. In the relational semantics of LFD, the dependence quantifiers become modalities and local dependence formulas are treated as special atoms. In particular, the modalities involving multiple variables correspond to intersections of relations. This leads to the study on the interaction between LFD and Boolean Modal Logic [2] (BML)—a poly-modal logic where families of binary relations are closed under the Boolean operations of union, intersection, and complement.
In this talk, I will present a BML version of LFD, which can express additional notions of dependence. I will provide an axiomatization, including details about its completeness proof. Furthermore, I will extend the framework by introducing conditional independence atoms, and propose an axiomatization for the extended logic.

This is joint work with Chenwei Shi and Qian Chen.

[1] Baltag, Alexandru, and Johan van Benthem. "A simple logic of functional dependence." Journal of Philosophical Logic 50 (2021): 939-1005.
[2] Gargov, George, and Solomon Passy. "A note on Boolean modal logic." Mathematical logic. Boston, MA: Springer US, 1990. 299-309.

报告人: 

何清瑜

清华大学2021级逻辑学博士生,研究兴趣为因果推理和依赖逻辑。


时间:2024年10月24日 (周四) 14:00-15:30

地点:清华大学逻辑学研究中心

    (蒙民伟人文楼 329)




关注我们,及时获取更多关于清华-阿姆斯特丹逻辑学联合研究中心的研究成果、科研教学活动、前沿问题研究进展及其他相关资讯。


水木逻辑
Tsinghua-UvA Joint Research Center in Logic 的研究成果、科研教学活动资讯、逻辑学前沿问题研究进展、与中心相关的其他信息。
 最新文章