读完需要
速读仅需 2 分钟
请尊重原创劳动成果
转载请注明本文链接
及文章作者:机器学习之心
点击阅读原文或复制以下链接到浏览器获取文章完整源码和数据:
摘要:新型智能优化算法 | Matlab实现FA-ESN萤火虫算法优化回声状态网络多输入单输出回归预测
1
1.新型智能优化算法 | Matlab实现FA-ESN萤火虫算法优化回声状态网络多输入单输出回归预测(完整源码和数据);
2.数据集为excel,多输入单输出数据集,运行主程序main.m即可,其余为函数文件,无需运行;
3.优化的参数为:三个参数,储备池规模,学习率,正则化系数。命令窗口输出RMSE、MAPE、MAE、R2等评价指标;
4.运行环境Matlab2018b及以上;
5.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。
购买后可加博主QQ1153460737咨询交流。注意:其他非官方渠道购买的盗版代码不含模型咨询交流服务,大家注意甄别,谢谢。
2
数据集
2.2
运行效果
完整代码链接:https://mbd.pub/o/bread/mbd-ZpuXlJlq
也可扫描二维码:
3
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);
P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);
%% 数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);
[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);
%% 数据平铺
P_train = double(reshape(P_train, f_, 1, 1, M));
P_test = double(reshape(P_test , f_, 1, 1, N));
t_train = t_train';
t_test = t_test' ;
%% 数据格式转换
for i = 1 : M
p_train{i, 1} = P_train(:, :, 1, i);
end
for i = 1 : N
p_test{i, 1} = P_test( :, :, 1, i);
end
4
嗯,细心的你会发现:https://mbd.pub/o/slowtrain/work
博客专家认证,机器学习领域创作者,2023博客之星TOP50,主做机器学习和深度学习时序、回归、分类、聚类和降维等程序设计和案例分析。科研课题模型定制/横向项目模型仿真/职称学术论文辅导/模型程序讲解均可联系本人唯一QQ1153460737(其他均为盗版,注意甄别)
技术交流群:购买博主任意代码或分享博主博文到任意三方平台后即可添加博主QQ进群