光伏光热窗可实现3.6%的转换效率并提供50℃的热水

文摘   2025-01-02 13:05   山东  

科学家们开发了一种使用半透明非晶硅PV层的窗口,该小组在伦敦以不同的倾斜角度测试了该系统,发现它可以实现3.6%的最大光电转换效率和17.6%的最大热转换效率。
 

PVTW 和 STW 图片:伦敦帝国理工学院, Advanced Sciecne

一个德英研究小组开发了一种新型建筑一体化混合光伏光热窗(PVTW),可以同时产生电力和生活热水(DHW)。

“在建筑环境中安装普通太阳能电池板和集热器需要获得大量的屋顶空间,而这是有限的。这推动了高效、建筑集成技术的发展,这些技术可以最大限度地提高空间利用率和能源供应,“该研究小组表示。“在这项工作中,制造并测试了一种建筑集成的混合PVTW,它由半透明PV层和选择性吸收的液体基热吸收器组成。”

PVTW 的主要组件是带有间隔非晶硅(a-Si)微条纹阵列的玻璃层。只有一部分阳光被光伏层吸收发电,而其余部分则传输到其下方4毫米厚的水层。两根黄铜管用作水的入口和出口闸门,两个聚碳酸酯框架用于夹紧一层标准的低铁含量玻璃层。

测试于2023年07月16日至23日在伦敦屋顶上进行,当时测得的最高环境温度为 34 °C,中午的太阳辐照度约为每平方米1100瓦。该装置在30°、60°和90°的倾角下进行了测试,并将其性能与缺少光伏组件的光热窗(STW)参考模块的性能进行了比较。后者与PVTW 相同,只是用玻璃层代替光伏层,从而产生两个玻璃层。
 

系统设计 图片:伦敦帝国理工学院, Advanced Sciecne

测试表明,PVTW系统可以达到3.6%的光电转换效率和17.6%的光热转换效率。

“PVTW在30°倾斜度下实现了3.6%的光电转换效率和10.7%的光热转换效率。能够产生约50℃ 的热水使其适合家庭应用,而其发电支持建筑物的能源需求,“该团队指出。“将 PVTW的倾斜角度从30°调整到90°证明了方向在系统性能中的重要性,同时观察到输出温度和热效率的变化。”

 

也就是说,在90°的倾斜度下,PVTW系统的光电转换效率为3.3%,光热转换效率为17.6%,最高出水温度约为42 °C。“与独立的污水处理厂相比,PVTW 不仅提供更高温度的热水,而且热效率绝对提高了10%,同时发电量也提高了。“ 他们补充说。

“为了了解PVTW对满足建筑物热能需求的潜在影响,我们可以估计满足英国伦敦一栋典型的三居室排屋(由2名成人和2名儿童居住)的热水需求所需的PVTW 表面,”科学家们说。“使用能量平衡,在30°倾角下需要不超过1.2平方米的总PVTW器件表面能满足这一需求。假设一个带有热水储水箱更大的系统,我们估计在相同倾角下需要约2.8平方米 的总PVTW 表面才能满足整个日常需求,而无需备用锅炉。”

拟议的系统发表在《先进科学》杂志上的“A Building-Integrated Hybrid Photovoltaic-Thermal (PV-T) Window for Synergistic Light Management, Electricity and Heat Generation,”中。 来自英国伦敦帝国理工学院(Imperial College London)和德国卡尔斯鲁厄理工学院(Karlsruhe Institute of Technology)的研究人员进行了这项研究。

Photovoltaic-thermal window achieves 3.6% electrical efficiency, provides hot water at 50 C

Scientists have developed a window that uses a semi-transparent amorphous silicon PV layer. The group tested the system in London at different inclination angles and found it can achieve a maximum electrical efficiency of 3.6% and a maximum thermal efficiency of 17.6%.

The PVTW and the STW

Image: Imperial College London, Advanced Science, CC BY 4.0

A German-British research team has developed a novel building-integrated hybrid PV-thermal window (PVTW) that can simultaneously produce electricity and domestic hot water (DHW).

“The installation of common solar panels and collectors in the built environment requires access to significant roof space, which is limited. This motivates the development of high-efficiency, building-integrated technologies that can maximize space utilization and energy provision,” said the group. “In this work, a building-integrated hybrid PVTW is fabricated and tested, composed of a semi-transparent PV layer and a selectively absorptive liquid-based thermal absorber.”

The main component of the PVTW is a glass layer with an array of spaced amorphous silicon (a-Si) micro-stripes. Only a part of the sunlight is absorbed by the PV layer for electricity generation, while the remaining portion is transmitted to the 4 mm-thick water layer below it. Two brass tubes are used as the inlet and outlet gates for the water, and two polycarbonate frames are employed to clamp one standard low-iron glass layer.

Testing occurred on a London roof between July 16 and 23, 2021, when the maximum ambient temperature was measured at 34 C and solar irradiance was about 1,100 W m−2 at midday. The setup was tested at inclination angles of 30°, 60°, and 90°, and its performance was compared to that of a solar thermal window (STW) reference module lacking the PV component. The latter was identical to the PVTW, except for substituting the PV layer with a glass layer, resulting in two glass layers.


The system design

Image: Imperial College London, Advanced Science, CC BY 4.0

The testing showed that the PVTW system can achieve an electric efficiency of 3.6% and a thermal efficiency of 17.6%.

“The PVTW achieved efficiencies of 3.6% in electricity and 10.7% in heat generation at a 30° inclination. The ability to produce around 50 C hot water makes it appropriate for domestic applications, while its electricity generation supports the building’s energy needs,” the team noted. “Adjusting the PVTW’s inclination angle from 30° to 90° demonstrates the importance of orientation in system performance, with changes in output temperature and thermal efficiency observed.”

Namely, at an inclination of 90°, the PVTW system recorded an electricity efficiency of 3.3%, a thermal efficiency of 17.6%, and a maximum outlet water temperature of about 42 C. “Compared to a standalone STW, the PVTW not only provides higher temperature hot water but also shows a 10% absolute increase in thermal efficiency, along with electricity generation,” they added.

“To understand the potential impact of the PVTW in meeting a building’s thermal energy needs, we can estimate the PVTW surface required to meet the hot-water demand of a typical three bedroom terraced house in London, UK, occupied by 2 adults and 2 children,” the academics said. “Using an energy balance, an overall PVTW surface of no more than around 1.2 m2 at a 30° inclination would be needed to meet this demand instantaneously. Assuming a wider system with a hot-water storage tank, we estimate an overall PVTW surface of ≈2.8 m2 at the same inclination would be needed to meet this entire daily demand without the need for a backup boiler.”

The proposed system was presented in “A Building-Integrated Hybrid Photovoltaic-Thermal (PV-T) Window for Synergistic Light Management, Electricity and Heat Generation,” published in Advanced Science. Researchers from Imperial College London in the UK and Karlsruhe Institute of Technology in Germany conducted the study.

(消息来源:pv-magazine.com)

西安浴日光能科技有限公司

电  话:029-81101199

手  机:18009182172(微信号)
邮  箱:marketing@yurisolar.com
网  址:www.yurisolar.com
地  址:陕西省西安市秦创原陕西物联网产业基地C区2号楼    

本微信公众号“钙钛矿材料和器件”所发表内容转载时会注明来源,版权归原出处所有(无法查证版权的或未注明出处的均来源于网络搜集)。转载内容(视频、文章、广告等)只以信息传播为目的,仅供参考,不代表本公众号认同其观点和立场。内容的真实性、准确性和合法性由原作者负责。如涉及侵权,请联系删除,此转载不作为商业用途。


热辐射与微纳光子学
热辐射与微纳光子学
 最新文章