最近特斯拉的FSD爆出在国内已经拿到测试牌照,FSD 进入国内倒计时中;而国内的华为在智能驾驶方面也是老早就喊出了遥遥领先的口号,所以,如果让特斯拉 FSD 和华为的 ADS 在能驾驶方面比一次,到底是华为厉害还是特斯拉厉害?所以,本文将结合我对智能汽车行业的认知和相关知识,从技术和产品角度分析在智能驾驶方面,到底是华为 ADS 厉害还是特斯拉 FSD 厉害?希望能给大家一些信息和启发。另外文末有调查看看大家认为谁最厉害,也欢迎大家留言讨论,补齐信息。特斯拉的智能驾驶FSD是纯视觉解决方案,我们之前文章《视觉为王-小鹏以及特斯拉的自动驾驶方案》中也分享了,特斯拉主要依靠8个摄像头采集视频数据;依靠AI芯片和算法进行数据处理,实现自动驾驶。简单拿摄像头来说,特斯拉HW 3.0总共8个摄像头,都是130万像素,而且都是2015年左右就出来的技术。而相比国内环视都到300万的“卷”,这个硬件成本低的够可以了,而且听说未来HW 4.0 也可能就是500万像素。
摄像头作为传感器,输入的数据,决定了后面的传输,处理成本,所以特斯拉的整套成本也会低。所以,我们可以看到特斯拉的核心能力来自于软件,特斯拉硬件相对简单,规格也相对一致,因此很容易实现迭代升级。只要特斯拉的生产规模扩大,成本优势就越明显。大家可以看到,特斯拉2019年推出的的HW 3.0,在过去的几年一直不断算法迭代,通过OTA实现更先进的视觉算法。从过去主要靠CNN算法到BEV + Transformer + Occupancy, 到现在端到端的概念,这些新的算法都可以通过OTA升级获取。特斯拉的模块化电脑硬件也可以通过更换模块的方式进行升级,大大降低了车辆的资产折旧。另外,特斯拉的视觉识别和人眼一样,依靠可见光和图像分析。我们之前文章《揭开ADAS感知摄像头 - 分辨率和帧率的神秘面纱》介绍过摄像头,目前摄像头的帧率一般都在每秒30次,所以只要有足够的计算能力,其响应速度的上限也就是33ms,你要知道人类的平均反应时间是250ms,战斗机以及赛车员的反应时间是100ms,当然人类对于显示的反应极限是13ms。所以,特斯拉的视觉方案有对突发、快速的障碍物感知的优势。视觉方案作为传感器,其实是模仿人类的眼睛,所以它也继承了人眼的缺陷 - 怕黑,怕不清楚,怕复杂干扰多的场景。当车辆处于逆光、夜晚、雨雾、道路标线和路侧标线不清晰的场景,或者路况复杂、干扰物多、或者大片白点的场景时,纯视觉方法会遇到难以克服的障碍和瓶颈。也就是说,这种解决方案的上限是无限接近人类视觉驾驶的水平,但无法超越人类视觉驾驶的水平。目前,受视觉方案限制,特斯拉的FSD在夜间及雨雾等能见度较差的自然条件下,智驾风险依然较大,很多场景依然需要驾驶员接管。另外就是视觉含有丰富的信息,特斯拉方案在不同国家和地区的通用性也需要强大的训练资源。华为的智能驾驶技术采用的是激光雷达和视觉融合方案,华为的技术主要依靠激光雷达采集数据,特别是GOD中用应该主要是用激光雷达来探索可行驶的空间(Lidar occupancy),通过AI芯片和算法对数据进行处理,实现自动驾驶。该方案的主要缺点是:成本较高、硬件升级困难、响应速度慢相比于摄像头,车载激光雷达技术出现时间较短,产业化规模不大,因此硬件成本较高,即使在中国多家激光雷达厂家互卷的情况下,当前一个激光雷达的BOM价格也还需要3000元左右,更别说欧美世界了。所以,采用激光雷达的厂商在硬件成本上难以与特斯拉视觉solely的方案竞争。另外,激光雷达和视觉同时采集数据需要数据融合处理,对算力和算法的要求也较高,如果看目前学术界,基本主流的人工智能研究和公布信息都是基于视觉,所以,华为走的激光雷达路线,需要自己内部较长时间的研发和实验投入。总体来说,华为选择了高成本的方案,当然华为希望借助中国市场的规模优势,最终压低成本,所以也不难理解华为到处和主机厂合作构建鸿蒙智行生态,一起来将华为激光雷达方案规模化,从而达到降本的目的。其次,华为方案对硬件依赖较大,熟悉华为ADS的应该,知道华为从2021年推出ADS 1.0到现在,其硬件方案已经经历了三代:- ADS 1.0基于13个摄像头(前视觉双目+长短距),三个激光雷达,六个毫米波,400TOPs算力的MDC,高精地图的方案。这个基本上算智能驾驶全家桶或者大杂烩。
- ADS 2.0,11个摄像头,一个激光雷达,200TOPs算力的MDC。相比之前ADS,减掉双目,两个激光雷达,三个毫米波,减掉一块昇腾610算力为200TOPs算力的MDC,减掉了高精地图。
- ADS 3.0,相比ADS 2.0,一个激光雷达从128线换到了192线,其中一个毫米波换成了4D毫米波。
所以,明显华为方案不同年份生产的车型硬件配置会有所不同,软件版本维护会越来越复杂,老款车型OTA难度也会越来越大,导致车辆资产折旧增加。普遍预计3-5年后,由于硬件升级,已经售出的车型很难再获得能力的进一步提升。在感知响应速度方面,一般激光雷达的采样率一般为10hz,其响应速度的上限为100ms,当然华为ADS 3.0采用的192线雷达采样频率已经达到20hz。所以从理论上来讲,不如视觉方法快。当然,从感知到执行响应,还需要经历通讯、计算、执行响应延迟等原因,所以,两者的差异很难体现出来。通过激光雷达感知环境数据,可以突破视觉限制。华为采用的1500波长激光雷达,无论是白天还是夜晚,无论是雨天、雾天还是尘土,对激光雷达的工作影响都很小。而且激光雷达收集的数据自带距离向量,不需要AI芯片进行计算,对芯片算力和算法的要求比较低。理论上,随着激光雷达方案的不断演进,最终可以超越人类驾驶水平,甚至实现夜间熄灯驾驶,是L4级自动驾驶的终极路线。所以,华为车型已具备在中国所有城市L2++的智能驾驶;华为智能驾驶的夜间驾驶表现非常优秀,甚至可在乡村道路和村落上实现智能驾驶。实际表现已全面领先特斯拉方案。并且大家可以从媒体以及自媒体视频中,看到华为车辆在一些极端条件下,如夜间、雨雾天气、逆光场景等,表现惊人,比特斯拉方案更可靠,接管率更低。当然不少人怀疑视频的真实性,相信看完我们文章,明白原理之后,应该不会怀疑真实性。从产品和商业的角度来看,特斯拉方案采用成熟传感系统,通用发展的AI技术,所以可以用低廉的成本实现更好的辅助驾驶,从而以更低的价格占领市场,为公司获取更好的利润,进入良性循环。从体验和技术上限来看,华为的方案未来应该可以无缝演化到L3以上的智能驾驶,可以实现更稳健和更广阔的ODD。但摆在华为面前的是如何扩大规模,通过用规模化降低成本,当然目前情况华为应该是on track。特斯拉底层技术是目前火爆世界的AI,跟随和共享世界视觉和语言通用AI技术的发展。而华为,底层技术也是AI,但是华为需要自己钻研自己独特的激光雷达应用技术。长期来讲,或许能走出一个无人能做的特色的道路,或许走入死胡同。这也就是在策划这篇文章时候,蹦出我脑袋里面第一句话“中国的华为,世界的特斯拉”,很遗憾这个标题有点怪,会引发一些争论,所以,没用,但通过这个可以无奈的看到地缘政治或许是下一个时代的常态。*未经准许严禁转载和摘录-参考资料:
加入我们的知识星球可以下载公众号海量参考资料,包含以上参考资料。