钻采工艺 | 李根生等:冲击破岩钻井提速技术研究现状与发展建议

文摘   2024-07-30 06:30   湖北  

摘要:
提高钻井速度不仅是提高我国油气效益开发及深地勘探等方面的重要技术手段,同时对保障国家能源安全意义重大。冲击破岩钻井技术在国内外油田现场应用并获得了良好的提速效果,持续开展此类技术攻关有望攻克当下我国深地高温高压硬岩地层进尺低、提速难的技术痛点。介绍和分析了轴向冲击、扭力冲击和轴-扭耦合冲击辅助钻头破岩钻进技术方面的实践及发展动态。结合冲击破岩钻井技术现状,阐明了冲击辅助钻头破岩力学原理是冲击破岩钻井提速技术的关键问题,综述了国内外研究学者在冲击辅助钻头破岩物理实验、理论模型和数值模拟等研究方法上取得的科学进展。针对冲击破岩钻井提速技术的发展提出了相关建议,即加强在材料结构优化设计、智能化控制、多元技术融合和井场应用优化等方面的研究力度,为我国能源高效开发做出贡献。

作者|李根生 穆总结 田守嶒 黄中伟 孙照伟

原题|冲击破岩钻井提速技术研究现状与发展建议

来源|新疆石油天然气

小编|小油

这是"油气研究前瞻"的第228篇文章

01


全文导读


中国石油和化学工业联合会公布的数据显示,截至2021年,我国以石油、天然气为代表的化石能源对外依存度仍维持在73%和45%的红线居高不下。在全球能源供需版图深刻变革的大环境下,我国“十四五”规划纲要明确提出加快“两深一非”油气资源利用,推动油气增储上产能源体系的战略目标。因此,加快国内油气资源勘探开发步伐,不仅关系到国计民生,更关系到国家能源战略安全。
钻井提速是保障油气资源高效快速开发的重要技术手段。近年来,我国油气资源勘探开发逐渐向深层、低渗、非常规等复杂地层发展。高效开发深层、低渗透油气藏,向“磨刀石”里要油气,被国际石油界公认为是21世纪的重要发展方向和世界性难题,其技术水平是衡量一个国家油气开采水平的重要标志。上述油气藏普遍存在储层致密、岩石强度高,导致机械钻速低、钻头进尺少等技术难题,迫切需要安全高效快速的钻井提速新方法、新技术。同时,近年来国际油价起伏不定,提高钻井速度已成为各油田降本增效的重要技术手段。持续开展钻井提速技术研究工作,不仅对提高我国油气田效益开发以及加强深地勘探等方面具有重大意义,同时也对保障国家能源安全意义重大。
高温高压、研磨性强、储层致密等地质赋存条件使安全高效钻井技术更具挑战性。在井下PDC钻头钻进过程中,动力钻具由于重力影响贴靠井壁,造成钻柱与井壁间摩阻增大,使机械钻速降低,导致钻柱在井下发生正弦或螺旋屈曲,诱发井下事故;另一方面,伴随着钻遇地层埋深增加,岩石非均质性增强,抗压抗剪强度增大,可钻性变差。当PDC钻头吃入地层后不能瞬间将岩石剪切破碎,导致地面转盘提供的扭矩能量不断积聚在钻头刀翼和钻柱上,直至克服岩石抗剪强度瞬时破碎地层岩石,致使钻柱与PDC钻头扭矩的瞬间积聚和释放产生,从而产生粘滑振动,进而导致PDC钻头切屑齿发生崩齿现象,缩短钻头使用寿命,降低破岩效率;同时,持续的粘滑振动还会使钻柱产生疲劳破坏,带来井下复杂事故。因此,在提高钻进作业效率和控制钻井成本的需求下,探索新型钻井提速机理的研究势在必行。
钻井提速的关键在于井底钻头的高效破岩效果。近年来,各种新型的接触式破岩与非接触式破岩方法在世界范围内得到发展,包括超声波冲击破岩、等离子体穿透破岩、激光辐射破岩和热力射流破岩等方法。虽然这些方法在实验室中已经充分验证了其用于破岩的优越性,但它们从研究成果转化到市场化应用,以及在井场能源开采中的大规模实施,仍存在一定距离。现场钻井实践表明,冲击钻井仍然是适用于硬质地层最有效的钻井提速方法。冲击破岩钻井提速技术是在传统旋转钻井技术基础上发展起来的钻井工艺,在提高机械钻速、节约钻井成本和缩短建井时间方面具有显著的技术优势。其技术原理建立在流体动力学理论发展的基础上,通过安装在钻头上部的振动冲击器将钻井液流压能转换为振动冲击能,使得钻头在随钻具旋转钻进的同时受到交变振动冲击载荷的作用,辅助钻头对井底岩石产生“旋转+冲击”作用,实现立体破碎效果,进而大幅提高破岩效率。通过大力开展攻关研究和推广这一技术有望攻克我国深地高温高压硬岩地层进尺低、提速难的技术痛点。本文综述了国内外冲击破岩钻井提速技术的发展动态及破岩原理发展现状,并提出了下一步的攻关方向。
相较于新型非接触式破岩方法,接触式的振动冲击辅助钻头破岩方法仍然是目前适用于油田现场最有效的钻井提速手段。轴-扭耦合冲击钻井技术可同时发挥轴向冲击和扭力冲击的破岩优势,弥补相互的技术局限。冲击破岩钻井提速技术的关键是厘清冲击辅助钻头破岩的力学原理。随着新材料、人工智能(AI)算法和智慧油田技术的不断发展,应加强振动冲击钻井技术在材料结构优化设计、智能化控制、多元技术融合和井场应用优化等方面的研究力度。


02


HIGHLIGHT图片


图1 轴向冲击钻井提速技术原理图
Fig.1 Schematic diagram of the axial percussive drilling technology

图2 Fluid Hammer提速钻具的凸轮运动示意图
Fig.2 Schematic diagram of the cam motion of the Fluid Hammer

图3 Torkbuster核心冲击系统工作原理示意图
Fig.3 Schematic diagram of the Torkbuster torsional impact system

图4 轴-扭耦合冲击辅助钻头钻进技术示意图
Fig.4 Schematic diagram of the axial-torsional coupled percussive drilling technology

图5 多维冲击器工具结构
Fig.5 Schematic diagram of the multi-dimensional impactor

图6 冲击载荷下岩石动态破碎演化过程
Fig.6 Rock breaking process under percussion loads

图7 不同冲击破岩方法下的破岩进尺和钻速对比
Fig.7 Comparison curves of penetration depths and drilling rates of different percussion rock-breaking methods

图8 扭转振动动力学理论模型
Fig.8 Theoretical model of torsional vibration dynamics

图9“轴+扭”循环冲击加载次数下的岩石破坏形貌
Fig.9 Rock failure patterns with axial+torsional cyclic loading


免责声明:本文仅用于学术交流和传播,不构成投资建议

-------

参考资料:

[1]罗佐县.我国原油对外依存度下降并非拐点出现[J].中国石化,2022,(3):68.LUO Z X. The decline of China's crude oil dependence on imports not mark a turning point[J]. Sinopec Monthly,2022,(3):68.

[2]新华社.中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要[EB/OL].[2023-12-27].https://www. ndrc. gov. cn/xxgk/zcfb/ghwb/202103/t20210323_1270124.html.The Xinhua News Agency. The outline of the 14th Five-Year Plan(2021-2025)for national economic and social development and vision 2035 of the People's Republic of China[EB/OL].[2023-12-27]. https://www. ndrc. gov. cn/xxgk/zcfb/ghwb/202103/t20210323_1270124.html.

[3]柳鹤,冯强,周俊然,等.射流式水力振荡器振动频率分析与现场应用[J].石油机械,2016,44(1):20-24.LIU H,FENG Q,ZHOU J R,et al. Vibration frequency analysis of jetting hydraulic oscillator[J]. China Petroleum Machinery,2016,44(1):20-24.

[4]孔令镕,王瑜,邹俊,等.水力振荡减阻钻进技术发展现状与展望[J].石油钻采工艺,2019,41(1):23-30.KONG L R,WANG Y,ZOU J,et al. Development status and prospect of hydro-oscillation drag reduction drilling technology[J]. Oil Drilling&Production Technology,2019,41(1):23-30.

[5]李悦. PDC钻头复合冲击破岩机理及模型研究[D].黑龙江大庆:东北石油大学,2017.LI Y. Study on the rock breaking mechanism and model of composite impact of the PDC bit[D]. Daqing,Heilongjiang:The Northeast Petroleum University,2017.

[6]穆总结,李根生,黄中伟,等.轴扭耦合冲击钻井技术研究[J].石油机械,2018,46(10):12-17.MU Z J,LI G S,HUANG Z W,et al. Research on axialtorsional coupling percussion drilling technology[J]. China Petroleum Machinery,2018,46(10):12-17.

[7]路宗羽,郑珺升,蒋振新,等.超声波高频旋冲钻井技术破岩效果试验研究[J].石油钻探技术,2021,49(2):20-25.LU Z Y,ZHENG J S,JIANG Z X,et al. An experimental study on rock breaking efficiency with ultrasonic high-frequency rotary-percussive drilling technology[J]. Petroleum Drilling Techniques,2021,49(2):20-25.

[8]KOCIS I,KRISTOFIC T,GEBURA M,et al. Novel deep drilling technology based on electric plasma developed in Slovakia[C]. The 32nd General Assembly and Scientific Symposium of the International Union of Radio Science(URSI GASS),Montreal,Canada,2017.

[9]LI Y J,LIN B Q,ZHANG X L. Effect of temperature on structural evolution and breakdown electrical characteristics of bituminous coal subjected to plasma breakage[J]. Fuel. 2022,328:125346.

[10]JAMALI S,WITTIG V,BÖRNER J,et al. Application of high powered laser technology to alter hard rock properties towards lower strength materials for more efficient drilling,mining,and geothermal energy production[J]. Geomechanics for Energy and the Environment. 2019,20(12):100112.

[11]BALAGE P,LOPEZ J,BONAMIS G,et al. Crack-free highaspect ratio holes in glasses by top-down percussion drilling with infrared femtosecond laser GHz-bursts[J]. International Journal of Extreme Manufacturing. 2022,5(1):015002.

[12]KANT M A,ROSSI E,MADONNA C,et al. A theory on thermal spalling of rocks with a focus on thermal spallation drilling[J]. Journal of Geophysical Research:Solid Earth. 2017,122(3):1805-1815.

[13]SONG X Z,LYU Z H,LI G S,et al. Model evaluation and experimental validation of thermal jet drilling for geothermal energy[J]. Geothermics. 2019,77(5):151-157.

[14]SAKSALA T. Thermal shock assisted percussive drilling:A numerical study on the single-bit axisymmetric case[J]. International Journal of Rock Mechanics and Mining Sciences.2020,132:104365.

[15]WHITELEY M C,ENGLAND W P. Air drilling operations improved by percussion-bit/hammer-tool tandem[J]. SPE Drilling Engineering. 1986,1(5):377-382.

[16]PRATT C A. Modifications to and experience with airpercussive drilling[J]. SPE Drilling Engineering. 1989,4(4):315-320.

[17]MELAMED Y,KISELEV A,GELFGAT M,et al. Hydraulic hammer drilling technology:Developments and capabilities[J]. Journal of Energy Resources Technology. 2000,122(1):1-7.

[18]HAN G,BRUNO M,LAO K. Percussive drilling in oil industry:Review and rock failure modelling[C]. AADE 2005 National Technical Conference and Exhibition,2005.

[19]王杰.钻井用双作用扭力冲击器设计计算与仿真[D].北京:中国地质大学(北京),2015.WANG J. Design calculation and simulation of doubleacting torsional impactor for drilling[D]. Beijing:China University of Geosciences(Beijing),2015.

[20]贾涛,徐丙贵,李梅,等.钻井用液动冲击器技术研究进展及应用对比[J].石油矿场机械,2012,41(12):83-87.JIA T,XU B G,LI M,et al. Research progress and application of contrast on hydraulic impactor for drilling[J]. Oil Field Equipment,2012,41(12):83-87.

[21]STAYSKO R,FRANCIS B,COTE B. Fluid hammer drives down well costs[C]. SPE/IADC Drilling Conference and Exhibition,Amsterdam,Netherlands,2011.

[22]苏长寿,谢文卫,杨泽英,等.系列高效液动锤的研究与应用[J].探矿工程(岩土钻掘工程),2010,37(3):27-31.SU C S,XIE W W,YANG Z Y,et al. Study and application of high efficiency hydro-hammer[J]. Drilling Engineering,2010,37(3):27-31.

[23]李根生,史怀忠,沈忠厚,等.水力脉冲空化射流钻井机理与试验[J].石油勘探与开发,2008,35(2):239-243.LI G S,SHI H Z,SHEN Z H,et al. Mechanisms and tests for hydraulic pulsed cavitating jet assisted drilling[J]. Petroleum Exploration and Development,2008,35(2):239-243.

[24]倪红坚,韩来聚,马清明,等.水力脉冲诱发井下振动钻井工具研究[J].石油钻采工艺,2006,28(2):15-17、20.NI H J,HAN L J,MA Q M,et al. Study on drilling tools of hydraulic-pulse-induced downhole vibration[J]. Oil Drilling&Production Technology,2006,28(2):15-17,20.

[25]秦春,陈小元,李禹,等.水力脉冲射流钻井提速技术在江苏油田的应用[J].石油机械,2015,43(5):17-21.QIN C,CHEN X Y,LI Y,et al. Applications of ROP ehancement technology of hydraulic pulse jet drilling in Jiangsu Oilfield[J]. China Petroleum Machinery,2015,43(5):12-17.

[26]史怀忠,李根生,张浩,等.塔河油田深井脉冲空化射流钻井试验研究[J].石油钻探技术,2013,41(3):85-88.SHI H Z,LI G S,ZHANG H,et al. Experiment study on hydraulic pulsed and cavitating jet drilling technique in deep wells of Tahe Oilfield[J]. Petroleum Drilling Techniques,2013,41(3):85-88.

[27]许京国,尤军,陶瑞东,等.自激振荡式旋转冲击钻井工具在大港油田的应用[J].钻采工艺,2013,36(3):124-125.XU J G,YOU J,TAO R D,et al. Application of selfoscillating impact drilling tool in Dagang Oilfield[J]. Petroleum Drilling Techniques,2013,36(3):124-125.

[28]穆总结,李根生,黄中伟,等.振动冲击钻井提速技术现状及发展趋势[J].石油钻采工艺,2020,42(3):253-260.MU Z J,LI G S,HUANG Z W,et al. Status and development trend of vibration-impact ROP improvement technologies[J]. Oil Drilling&Production Technology,2020,42(3):253-260.

[29]SAZIDY M S,RIDEOUT D G,BUTT S D,et al. Modeling percussive drilling performance using simulated viscoelasto-plastic rock medium[C]. The 44th US Rock Mechanics Symposium and The 5th US-Canada Rock Mechanics Symposium,Salt Lake City,Utah,USA,2010.

[30]XUE Q L,LEUNG H,HUANG L L,et al. Modeling of torsional oscillation of drillstring dynamics[J]. Nonlinear Dynamics,2019,96(1):267-283.

[31]DEEN A,NAYAN A,MATHISON S K,et al. Application of a torsional impact hammer to improve drilling efficiency[C].SPE Annual Technical Conference and Exhibition,Denver,Colorado,USA,2011.

[32]卢玲玲,何东升,张伟东,等.扭转冲击器研究及应用[J].石油矿场机械,2015,(6):82-85.LU L L,HE D S,ZHANG W D,et al. Research and application prospect of torsional impact hammer[J]. Oil Field Equipment,2015,(6):82-85.

[33]王红希.旋冲式扭力冲击器结构设计及参数优化研究[D].山东青岛:中国石油大学(华东),2018.WANG H X. Structural design and parameters optimization research of rotary torsional impact generator[D]. Qingdao,Shandong:China University of Petroleum(East China),2018.

[34]祝效华,汤历平,吴华,等.扭转冲击钻具设计与室内试验[J].石油机械,2011,39(5):27-29.ZHU X H,TANG L P,WU H,et al. Design and laboratory test of torsional impact drilling tool[J]. China Petroleum Machinery,2011,39(5):27-29.

[35]TANG L P,ZHU X H. On the development of highfrequency torsional impact drilling techniques for hard formation drilling[J]. Advances in Mechanical Engineering,2018,10(6):2072047248.

[36]周燕,金有海,董怀荣,等. SLTIDT型钻井提速工具研制[J].石油矿场机械,2013,42(1):67-70.ZHOU Y,JIN Y H,DONG H R,et al. Development of SLTIDT type torsion impact fast drilling tool[J]. Oil Field Equipment,2013,42(1):67-70.

[37]周燕,安庆宝,蔡文军,等. SLTIT型扭转冲击钻井提速工具[J].石油机械,2012,40(2):15-17.ZHOU Y,AN Q B,CAI W J,et al. SLTIT type torsion impact fast drilling tool[J]. China Petroleum Machinery,2021,40(2):15-17.

[38]POWELL S W,HERRINGTON D,BENOIT B,et al. Fluid hammer increases PDC performance through axial and torsional energy at the bit[C]. SPE Annual Technical Conference and Exhibition. New Orleans,Louisiana,USA,2013.

[39]柳贡慧,李玉梅,李军,等.复合冲击破岩钻井新技术[J].石油钻探技术,2016,44(5):10-15.LIU G H,LI Y M,LI J,et al. New technology with composite percussion drilling and rock breaking[J]. Petroleum Drilling Techniques,2016,44(5):10-15.

[40]查春青,柳贡慧,李军,等.复合冲击破岩钻井新技术提速机理研究[J].石油钻探技术,2017,45(2):20-24.ZHA C Q,LIU G H,LI J,et al. The rock breaking mechanism of the compound percussive-rotary drilling method with a PDC bit[J]. Petroleum Drilling Techniques,2017,45(2):20-24.

[41]陈杰,牟小军,李汉兴,等.旋冲振荡钻井提速工具的研制与应用[J].断块油气田,2020,27(3):386-389.CHEN J,MOU X J,LI H X,et al. Development and application of rotary-percussive and oscillatory drilling tool[J].Fault-block Oil&Gas Field,2020,27(3):386-389.

[42]刘书斌,倪红坚,张恒,等.多维冲击器钻井提速技术及应用[J].石油机械,2020,48(10):44-50.LIU S B,NI H J,ZHANG H,et al. Multi-dimensional impactor and its application[J]. China Petroleum Machinery,2020,48(10):44-50.

[43]MAURER W C. The state of rock mechanics knowledge in drilling[C]. The 8th US Symposium on Rock Mechanics(USRMS),Minneapolis,Minnesota,USA,1966.

[44]CHIANG L E,ELIAS D A. Modeling impact in down-thehole rock drilling[J]. International Journal of Rock Mechanics and Mining Sciences,2000,37(4):599-613.

[45]FRANCA L F P,WEBER H I. Experimental and numerical study of a new resonance hammer drilling model with drift[J]. Chaos,Solitons&Fractals. 2004,21(4):789-801.

[46]左宇军,李夕兵,马春德,等.动静组合载荷作用下岩石失稳破坏的突变理论模型与试验研究[J].岩石力学与工程学报,2005,24(5):741-746.ZUO Y J,LI X B,MA C D,et al. Catastrophic model and testing study on failure of static loading rock system under dynamic loading[J]. Chinese Journal of Rock Mechanics and Engineering,2005,24(5):741-746.

[47]NIU D M. Rigid impact-the mechanism of percussive rock drilling[C]. The 42nd US Rock Mechanics Symposium and The 2nd U S-Canada Rock Mechanics Symposium. San Francisco,California,USA,2008.

[48]李思琪,闫铁,李玮,等. PDC钻头扭转冲击破岩机理及试验分析[J].长江大学学报:自然科学版,2015,12(2):48-51.LI S Q,YAN T,LI W,et al. Rock breaking mechanism and experimental analysis of PDC bit subjected to torsional impact[J]. Journal of Yangtze University(Natural Science Edition),2015,12(2):48-51.

[49]LIU S B,NI H J,JIN Y,et al. Experimental study on drilling efficiency with compound axial and torsional impact load[J].Journal of Petroleum Science and Engineering. 2022,219:111060.

[50]MU Z J,HUANG Z W,SUN Z W,et al. Experimental study on dynamic characteristics of axial-torsional coupled percussive drilling[J]. Journal of Petroleum Science and Engineering. 2022,219(8):111094.

[51]PAVLOVSKAIA E,HENDRY D C,WIERCIGROCH M.Modelling of high frequency vibro-impact drilling[J]. International Journal of Mechanical Sciences. 2015,91:110-119.

[52]CHIANG L E. Dynamic force-penetration curves in rock by matching theoretical to experimental wave propagation response[J]. Experimental Mechanics. 2004,44(2):167-175.

[53]葛涛,王明洋,侯晓峰.冲击荷载作用下岩石破坏机理预测[J].岩土力学,2006,27(S2):1075-1078.GE T,WANG M Y,HOU X F. Prediction for failure mechanism of rock under impact loading[J]. Rock and Soil Mechanics,2006,27(S1):1075-1078.

[54]WIERCIGROCH M,KRIVTSOV A M,WOJEWODA J. Vibrational energy transfer via modulated impacts for percussive drilling[J]. Journal of Theoretical and Applied Mechanics. 2008,46(3):715-726.

[55]毛良杰,马茂原,刘立鹏,等.扭力冲击器对钻柱粘滑振动的影响分析[J].断块油气田,2022,29(4):545-551.MAO L J,MA MAO Y,LIU L P,et al. Influence of torsional impactor on stick-slip vibration of drillstring[J]. Faultblock Oil&Gas Field,2022,29(4):545-551.

[56]汪伟,柳贡慧,李军,等.复合冲击钻井工具结构设计与运动特性分析[J].石油机械,2019,47(7):24-29.WANG W,LIU G H,LI J,et al. Structural design and motion behavior analysis of composite percussion drilling tool[J].China Petroleum Machinery,2019,47(7):24-29.

[57]AKBARI B,BUTT S D,MUNASWAMY K,et al. Dynamic single PDC cutter rock drilling modeling and simulations focusing on rate of penetration using distinct element method[C]. The 45th US Rock Mechanics/Geomechanics Symposium,San Francisco,California,USA,2011.

[58]朱海燕,刘清友,邓金根,等.冲旋钻井条件下的岩石破碎机理[J].应用基础与工程科学学报,2012,20(4):622-631.ZHU H Y,LIU Q Y,DENG J G,et al. Rock breaking mechanism under rotary-percussion drilling conditions[J]. Journal of Basic Science and Engineering,2012,20(4):622-631.

[59]景英华,袁鑫伟,姜磊,等.高速旋转冲击钻井破岩数值模拟及现场实验[J].中国石油大学学报:自然科学版,2019,43(1):75-80.JING Y H,YUAN X W,JIANG L,et al. Numerical simulation and field experimental study on rock breaking in high speed rotating percussion drilling[J]. Journal of China University of Petroleum(Natural Science Edition),2019,43(1):75-80.

[60]LI Y M,ZHANG T,TIAN Z F,et al. Simulation on compound percussive drilling:Estimation based on multidimensional impact cutting with a single cutter[J]. Energy Reports. 2021,7(6):3833-3843.

[61]WANG W,LIU G H,LI J,et al. Numerical simulation study on rock-breaking process and mechanism of compound impact drilling[J]. Energy Reports. 2021,7(5):3137-3148.

[62]WANG W,LIU G H,LI J,et al. Numerical investigation on rock-breaking mechanism and cutting temperature of compound percussive drilling with a single PDC cutter[J]. Energy Science&Engineering. 2021,9(12):2364-2379.

END

扫描左方二维码

邀您进行业千人大群

往期精彩

二氧化碳资源化利用研究进展

中国南海“双深双高”技术进展

纳米颗粒技术优化CO2地质封存

深层煤岩气二氧化碳泡沫压裂评价方法

二氧化碳捕集研究进展及在驱油中的应用

国内外PDC钻头新进展与发展趋势展望

中国海油在海域勘探取得重大进展

深层煤层气水平井安全钻井技术

中国油气工程技术装备智能化

超深特深油气井固井关键技术进展

中国煤系气形成分布、甜点评价与展望

中国煤层气水平井钻完井技术研究进展

深地塔科1井钻井设计关键技术

提高油气田采收率技术协同方法与应用

油田开发提高采收率新方法研究进展与展望

深部煤层气井压裂工艺研究及应用

超临界CO2脉动压裂-渗流耦合系统应用

深层碳酸盐岩储层酸压进展与展望

旋转齿PDC钻头研制及应用

PDC钻头钻井提速关键影响因素研究

氦气资源形成条件、成因与富集规律

PDC钻头研究现状与发展趋势

超深层油气勘探领域研究进展与关键问题

中国深部煤层气地质研究进展

深层煤岩气水平井钻井技术

超深特深油气井固井关键技术进展

深部煤层气井排采制度研究与实践


油气研究前瞻
聚焦全球油气领域的科技创新、政策解读、工业升级、资本运作等热点话题,致力于为油气领域的决策者、创新者、研究者与投资者提供高端咨询服务。我们密切关注油气行业的最新动态,分析能源战略、创新技术和产业布局的新进展,以助力行业的发展和升级。
 最新文章