油气开发 | 刘合等:2023年采油采气工程技术热点回眸

文摘   2024-08-05 06:48   湖北  

作者|刘合 金旭 师俊峰

原题|2023年采油采气工程技术热点回眸

来源|科技导报

小编|小油

这是"油气研究前瞻"的第244篇文章

01


全文导读


中国能源战略安全面临严重挑战,原油对外依存度高达71.2%,天然气达到40.2%。为应对这一挑战,油气行业需加大勘探开发力度,坚守国内原油2亿吨产量红线,满足国家绿色发展对天然气快速增长的需求。采油采气工程作为连接地面和井下的桥梁,是油气田维持正常运转与保持产量稳定的关键。本文重点介绍2023年采油采气工程在分层注入、人工举升、储层改造、采气工艺及井下作业五个核心领域的技术新进展。
2023年,国内外采油采气工程技术取得显著进展。中国主要在智能分层注入、高效人工举升、全生命周期采气工艺、精细化储层改造、复杂井况井下作业等方面取得显著技术进步,有效保障了新区快速建产、老油气田挖潜增效和油气田安全生产。然而,随着新建产区以深层与非常规为主、老油气田进入开发中后期,效益开发与挖潜增效难度增大、注采井况日趋复杂、绿色安全环保生产要求更高,采油采气工程面临新挑战、新要求。下一步将重点围绕以下四个方面开展技术攻关:
一是加强深层/非常规资源效益动用提产降本技术攻关,升级完善储层改造技术,打造精细化、经济化、智能化技术链条;攻关深层与非常规高效采油采气技术,保障高质量效益建产。
二是持续推动老油气田提效挖潜技术转型升级,完善配套老油田低成本侧钻挖潜技术、水平井重复压裂技术;研发低成本智能分层注水、精细分层注气、非常规气藏全生命周期精细排采、清洁能源替代等油气井挖潜增效工程技术体系,提升经济高效绿色采油采气水平。
三是加快提升复杂工况井下作业能力和智能化水平,大力提升自动化、电动化水平,助力井下作业数字化转型智能化发展;攻关电控液控工具、可视化井筒检测工具等,提升复杂工况井作业能力。
四是加强井筒质量提升,筑牢绿色安全环保生产根基,强化高风险井井筒质量管理和提升监测治理技术水平,确保长期安全生产;深化深层页岩气等套损套变井预防与治理技术研究,大幅提升井筒质量。
“工程技术一小步,勘探开发一大步”。采油采气工程系统将认真贯彻落实指示批示精神,以保障国家能源安全为己任,以油气开发需求为导向,直面挑战,担当作为,加快技术创新,突破技术瓶颈,为油气田上产稳产提供坚强保障。


02


HIGHLIGHT图片


图1 带压作业井缆控分层注水技术

图2 流量波无线控制集约式分层注水井下配水器

图3 试验区同井注采试验前后效果对比

图4 同井注采工艺原理

图5 大港港西2号电潜螺杆泵大平台

图6 一机双井超长冲程抽油机

图7 PetroPE工况智能预警模块

图8 PetroPE高精度数字计量模块

图9 吉林油田新立采油厂零碳示范区

图1 0 风光供能注消一体智能泡沫排水采气装备

图1 1 井下多参数智能感知柱塞

图1 2 气举+泡排压降规律

图1 3 FrSmart1.0主要功能

图1 4 FrSmart1.0模拟水平井压裂裂缝展布

图1 5 集成测试配套示意

图1 6 膨胀管井筒重构工艺示意

图1 7 小套管固井井筒重构工艺示意


免责声明:本文仅用于学术交流和传播,不构成投资建议

-------

参考资料:

[1]刘合,裴晓含,罗凯,等.中国油气田开发分层注水工艺技术现状与发展趋势[J].石油勘探与开发, 2013, 40(6):733-737.

[2]刘合,裴晓含,贾德利,等.第四代分层注水技术内涵、应用与展望[J].石油勘探与开发, 2017, 44(4):608-614.

[3]孙金声,刘伟.我国石油工程技术与装备走向高端的发展战略思考与建议[J].石油科技论坛, 2021, 40(3):43-55.

[4]刘合,郑立臣,俞佳庆,等.分层注水井下监测与数据传输技术的发展及展望[J].石油勘探与开发, 2023, 50(1):174-182.

[5] Ming E Y, Yu J Q, Zheng L C, et al. Transmission model of transient flow wave signal in intelligent layered water injection system[J]. Journal of Petroleum Exploration and Production Technology, 2023, 13(9):1935-1950.

[6]中国石油新闻中心. 2022年度中国石油十大科技进展:进展4[EB/OL].[2023-12-24]. http://news. cnpc. com. cn/cms_udf/2023/sdkj1108/.

[7] Xing L, Guan S, Gao Y, et al. Measurement of a three-dimensional rotating flow field and analysis of the internal oil droplet migration[J]. Energies, 2023, 16(13):5094.

[8] Gao Y, Liu H, Yu J, et al. Design and analysis of an axial center-piercing hydrocyclone[J]. Energies, 2023, 16(19):6800.

[9]邢雷,苗春雨,蒋明虎.井下微型气液旋流分离器优化设计与性能分析[J].化工学报, 2023, 74(8):3394-3406.

[10] Liao C L, Jia D L, Yang Q H, et al. An intelligent separated zone oil production technology based on electromagnetic coupling principle[C]//SPE/IATMI Asia Pacific Oil&Gas Conference and Exhibition. Jakarta, Indonesia:SPE, 2023:SPE-215238-MS.

[11]许建国,杨清海,伊鹏,等.采油井模块化分层流体取样与压力测试技术[J].石油勘探与开发, 2022, 49(2):385-393.

[12] Zhang X, Wang C, Sun Y, et al. Cloud-edge combination:A novel intelligent intermittent pumping optimization and control method for tight oil wells[C]//Abu Dhabi International Petroleum Exhibition and Conference. Abu Dhabi, UAE:SPE, 2022:SPE-211802-MS.

[13]孙延安,郑东志,钱坤,等.古龙页岩油水平井宽排量潜油电泵举升技术现状[J].采油工程, 2022(3):43-49.

[14] Gao Y, Cao W D, Zhang Y J, et al. Investigation of high-speed deep well pump performance with different outlet setting angle of space guide vane[J]. Frontiers in Energy Research, 2023, 10:1072901.

[15]李越,白健华,于法浩,等.渤海油田宽幅电潜泵举升技术研究及应用[J].承德石油高等专科学校学报,2023, 25(3):20-26.

[16]韦敏,车传睿,龚俊,等.宽幅电潜泵结构设计与内部流场特性分析[J].水泵技术, 2023(5):11-15.

[17] Chen S, Deng F, Chen G, et al. Research and application of big data production measurement method for SRP wells based on electrical parameters[C]//International Petroleum Technology Conference. Bangkok, Thailand:OnePetro, 2023:IPTC-23013-EA.

[18] Fraga R S, Castellões O G S, Assmann B W, et al. Progressive Vortex Pump:A new artificial lift pumped method[J]. SPE Production&Operations, 2020, 35(2):454-463.

[19] Carpenter C. Subsurface compressor system improves gas production in unconventional reservoirs[J]. Journal of Petroleum Technology, 2021, 73(7):62-63.

[20] JPT staff. legends of artificial lift(July 2022)[J]. Journal of Petroleum Technology, 2022, 74(7):34-38.

[21] Alimbekov R, Alimbekova S, Akshentsev V G, et al.Method for transmitting telemetric signals during the operation of producing wells by sucker rod pumps and a system for its implementation:RU2022123337[P]. 2022-09-01

[22]中国石油勘探开发研究院,中国石油天然气集团有限公司采油采气重点实验室.油井生产系统智能优化决策技术[J].石油科技论坛, 2022, 41(3):106.

[23]柳智青.原油如何“零碳”:中国石油吉林油田产出我国首桶“零碳原油”的调查[N].中国石油报, 2023-08-24(002).

[24]于洋.零碳采油从零起步[J].中国石油石化, 2022(20):44-47.

[25]贾敏,郭东红,李隽,等.涩北气田泡沫排水采气效果下降原因分析及对策[J].石油钻采工艺, 2022, 44(4):482-486.

[26]肖雨阳,李军亮.柱塞气举排水采气井工作制度优化方法研究[J].天然气与石油, 2022, 40(6):81-87.

[27] Al-Hamzah A, Sharafaddin O, Sirajuddin M S. Artificial lift method selection and design to enhance well production optimization:A field case study[J]. Petroleum&Coal, 2023, 65(1):1-12.

[28] Syed F I, Muther T, Dahaghi A K, et al. AI/ML assisted shale gas production performance evaluation[J]. Journal of Petroleum Exploration and Production Technology,2021, 11(9):3509-3519.

[29] Zhang H, Chen J, Ye C, et al. Life-cycle deliquification techniques and their application for deep shale gas reservoirs[J]. Natural Gas Industry B, 2023, 10(4):333-340.

[30] Zalavadia H, Gokdemir M, Sinha U, et al. Real time artificial lift timing and selection using hybrid data-driven and physics models[C]//SPE Western Regional Meeting,Anchorage, Alaska, USA:SPE, 2023:SPE-213040-MS.

[31] Cope B, Gilmore D. Case study:Gas lift-plunger lift combination creates full life cycle production solution[J].Journal of Petroleum Technology, 2023, 75(10):49-53.

[32] Okoro F, Arochukwu E, Abuah N, et al. A successful foam assisted gas lift trial in a matured niger delta field[C]//SPE Nigeria Annual International Conference and Exhibition. Lagos, Nigeria:SPE, 2023:SPE-217208-MS.

[33] Amani P, Firouzi M. Uninterrupted lift of gas, water, and fines in unconventional gas wells using foam-assisted artificial lift[J]. Gas Science and Engineering, 2023, 114(2023):204977.

[34] Sayma O, Jones K, Hale R, et al. Surface compression and PAGL:Increase and extend production for shale wells[C]//SPE/AAPG/SEG Unconventional Resources Technology Conference. Denver, Colorado, USA:SPE,2023:URTEC-3867326-MS.

[35]郑新权,何春明,杨能宇,等.非常规油气藏体积压裂2.0工艺及发展建议[J].石油科技论坛, 2022, 41(3):1.

[36]石油商报. FrSmart1.0发布!他们交出“自主研发”优秀答卷[EB/OL].(2023-11-29)[2023-12-24]. https://baijiahao. baidu. com/s? id=1783868339966948487&wfr=spider&for=pc.

[37] Zhang Y, Ali W, Jiang C, et al. Optimal treatment and reuse of flowback and produced water:Selective removal of problematic cations for stability of friction reducers[C]//Unconventional Resources Technology Conference(URTeC), 2023:482-505.

[38] Sarmah A, Ataceri I Z, Vijapurapu R, et al. Rock and fluid-based correlation to describe surfactant molecular structure's impact on spontaneous imbibition experiments'performance[C]//SPE/AAPG/SEG Unconventional Resources Technology Conference. URTEC:SPE, 2023:D011S013R002.

[39] Li J, He S, Wu M. A new type microproppant and its property evaluation for shale gas reservoirs[J]. SPE Journal, 2023, 209:1-16.

[40] Gala D, Pankaj P, Kamps J, et al. Optimizing completion design to improve near-wellbore and far-field cluster efficiency:Leveraging downhole data and calibrated physics-based models[C]//SPE/AAPG/SEG Unconventional Resources Technology Conference. Denver, Colorado, USA:SPE, 2023:URTEC-3860762-MS.

[41] Ma W, Wu K, Jin G. Geomechanics modeling of strainbased pressure estimates:Insights from distributed fiber optic strain measurements[C]//SPE/AAPG/SEG Unconventional Resources Technology Conference. Denver,Colorado, USA:SPE, 2023:URTEC-3864861-MS.

[42] Gurjao K G R, Gildin E, Gibson R, et al. Modeling of fiber-optic strain response when pumping stops to verify potential continuation of fracture extension[C]//SPE/AAPG/SEG Unconventional Resources Technology Conference. Denver, Colorado, USA:SPE, 2023:URTEC-3870194-MS.

[43] Ratnayake R, Ghassemi A. Modeling of fiber optic strain responses to shear deformation of fractures[C]//SPE/AAPG/SEG Unconventional Resources Technology Conference. Denver, Colorado, USA:SPE, 2023:URTEC-3852059-MS.

[44] Owens K, Chittenden H, Schult M, et al. Using disposable fiber to monitor simul-frac stimulation fracture growth[C]//SPE/AAPG/SEG Unconventional Resources Technology Conference. Denver, Colorado, USA:SPE,2023:URTEC-3850500-MS.

[45] Fowler G, Zaghloul J, Jones D, et al. A success story:Screening and optimizing refracs in the eagle ford[C]//SPE/AAPG/SEG Unconventional Resources Technology Conference. Denver, Colorado, USA:SPE, 2023:URTEC-3848875-MS.

[46] Leshchyshyn T, Vande A, Barba R, et al. Refrac and recomplete whole history in the North Dakota:Determining detailed type and sub-type of refrac and incremental production[C]//SPE/AAPG/SEG Unconventional Resources Technology Conference. Denver, Colorado, USA:SPE, 2023:URTEC-3871674-MS.

[47] Tang S, Qin F, Dong L, et al. Development status and application of under pressure operation equipment technology[C]//IOP Conference Series:Earth and Environmental Science. Xiamen:IOP Publishing, 2021:012010.

[48] Unnikrishnan V, Navin G, Breitenfeld F. Improved bearing design in workover motor boosts operational efficiency for plug milling in North America[C]//SPE/ICoTA Well Intervention Conference and Exhibition. The Woodlands, Texas:SPE, 2023:SPE-212913-MS.

[49] Chishti S S, Gopalan B, Craig S. Field trial to enhance open-hole coiled tubing accessibility with the use of a special coiled tubing lubricant[C]//SPE/ICoTA Well Intervention Conference and Exhibition. The Woodlands,Texas:SPE, 2023:SPE-212903-MS.

[50] Chishti S S, Sima L, Bukhari M A E. A Cost-Effective approach to enhance coiled tubing accessibility in extended reach wells with the use of a special lubricant:A case history[C]//SPE/ICoTA Well Intervention Conference and Exhibition. Texas:OnePetro, 2023:SPE-212894-MS.

[51] World oil. Combining video and ultrasound increases downhole data capture accuracy[EB/OL].[2023-12-24].https://www. worldoil. com/magazine/2023/may-2023/special-focus-well-completion-technology/combining-video-and-ultrasound-increases-downhole-data-capture-accuracy/.

[52] SLB Products and Services. Fiber-optic solutions[EB/OL].(2021-08-19)[2023-12-24]. https://www. slb. com/products-and-services/innovating-in-oil-and-gas/reservoir-characterization/surface-and-downhole-logging/optiq-schlumberger-fiber-optic-solutions.

[53]王宏亮.油田修井作业自动化装置的应用[J].中国石油和化工标准与质量, 2023, 43(10):104-106.

[54]王鑫,王丰良,赵志成,等. DYJ80型自动化带压作业机研制及应用[J].石油机械, 2023, 51(7):104-112.

[55] Troup D J, Correia G, Murchie S W, et al. Carbon composite technologies combine with the latest high performance downhole tractor to gather production data from deeper than ever before, logging 32 compartments over25000 ft horizontally to a total depth of 40, 600 ft[C]//SPE/ICoTA Well Intervention Conference and Exhibition.Texas, USA:SPE, 2023:SPE-212917-MS.

END

扫描左方二维码

邀您进行业千人大群

往期精彩

二氧化碳资源化利用研究进展

中国南海“双深双高”技术进展

纳米颗粒技术优化CO2地质封存

深层煤岩气二氧化碳泡沫压裂评价方法

二氧化碳捕集研究进展及在驱油中的应用

国内外PDC钻头新进展与发展趋势展望

中国海油在海域勘探取得重大进展

深层煤层气水平井安全钻井技术

中国油气工程技术装备智能化

超深特深油气井固井关键技术进展

中国煤系气形成分布、甜点评价与展望

中国煤层气水平井钻完井技术研究进展

深地塔科1井钻井设计关键技术

提高油气田采收率技术协同方法与应用

油田开发提高采收率新方法研究进展与展望

深部煤层气井压裂工艺研究及应用

超临界CO2脉动压裂-渗流耦合系统应用

深层碳酸盐岩储层酸压进展与展望

旋转齿PDC钻头研制及应用

PDC钻头钻井提速关键影响因素研究

氦气资源形成条件、成因与富集规律

PDC钻头研究现状与发展趋势

超深层油气勘探领域研究进展与关键问题

中国深部煤层气地质研究进展

深层煤岩气水平井钻井技术

超深特深油气井固井关键技术进展

深部煤层气井排采制度研究与实践


油气研究前瞻
聚焦全球油气领域的科技创新、政策解读、工业升级、资本运作等热点话题,致力于为油气领域的决策者、创新者、研究者与投资者提供高端咨询服务。我们密切关注油气行业的最新动态,分析能源战略、创新技术和产业布局的新进展,以助力行业的发展和升级。
 最新文章