油气开发 | 郭建春等:胜利油田低渗透油藏压驱工程方案优化及矿场应用

文摘   2024-07-28 06:27   湖北  

作者|郭建春 卢聪 马莅

原题|胜利油田低渗透油藏压驱工程方案优化及矿场应用

来源|大庆石油地质与开发

小编|小油

这是"油气研究前瞻"的第222篇文章

01


全文导读


在石油开采领域,低渗透油藏因其开发难度大、经济效益相对较低而成为世界性难题。近日,一项关于胜利油田低渗透油藏的压驱技术研究引起业界广泛关注。该技术有效提升了低渗透油藏的开发效率,为全球石油工业提供了新的解决方案。
胜利油田位于中国东部,是国内重要的石油生产基地之一。据最新研究报告显示,胜利油田低渗透油藏的探明地质储量高达11.8亿吨,其中一般低渗透油藏占比达到72.6%。尽管资源丰富,但由于低孔低渗的特性,传统的水驱开发方式面临诸多挑战,如注水压力过高、产能递减快等问题,严重制约了油田的开发效率与经济性。
为解决这一难题,胜利油田于2020年提出了“压-闷-采”一体化压驱工艺。该工艺通过大排量注水提升地层吸水能力,结合闷井工艺扩大波及面积,促进油水置换,最终通过伴注驱油剂提升洗油效率。此技术的提出和实施,不仅增强了注水能力,还大幅提升了采油效率,为低渗透油藏的绿色、经济、高效开发提供了新思路。
近年来,压驱工艺已在国内外多个油田得到应用,并展现出良好的应用前景。根据作业方式的不同,压驱工艺分为正向压驱和反向压驱两种。正向压驱主要针对孔渗物性差、注水压力高、动用程度低的低渗透油藏;而反向压驱则更适用于物性更差的致密油储层,如致密砂岩油藏、页岩油藏等。
压驱技术的研究和发展经历了多个阶段,从最初的基质渗析置换采油到现今的压裂驱油-闷井渗吸阶段,技术不断进步和完善。然而,尽管现场应用取得了一定的成效,但整体来看,胜利油田低渗透油藏的压驱技术仍处于初步探索阶段,许多工程参数还需进一步优化和调整。
在此背景下,研究人员基于非线性渗流模型、Biot线弹性理论以及连续损伤模型,建立了耦合渗流-应力-损伤(H-M-D)的低渗储层压驱数学模型,并开展了“压-闷-采”一体化压驱数值模拟。通过对比胜利油田不同区块的实施情况,评价了压驱开发效果,并提出了优化建议。
研究指出,通过优化单层压驱注入量、注入速度、闷井时间及驱油剂浓度等关键参数,可以显著提高低渗透油藏的开发效率。例如,BN1区块在经过优化后,缝网长度、宽度及高度相较于未优化的BN0区块有了明显提升,日产液量大幅降低,而日产油量和含水率均得到显著改善。
此项研究不仅为胜利油田乃至全球低渗透油藏的开发提供了重要的技术支持,也展示了科技创新在推动传统能源产业转型升级中的重要作用。随着压驱技术的不断完善和应用,预计将有效延长油田的经济寿命,为全球能源结构的优化和可持续发展做出贡献。


02


HIGHLIGHT图片


图1 储层渗流-应力-损伤(H-M-D)耦合数学模型示意
Fig.1 Schematic coupled mathematical model of reservoir hydraulic-mechanical-damage(H-M-D)

图2 压驱工程参数优化图版
Fig.2 Chart of fracturing-flooding engineering parameters optimization

图3 压驱实施工程参数对比
Fig.3 Comparison of engineering parameters of fracturing-flooding

图4 BN1区块X15井压驱注水微地震监测事件
Fig.4 Microseismic monitoring events of water injection during fracturing-flooding in Well X15 of BN1

图5 BN1区块X15井压驱注水受效范围对比
Fig.5 Comparison of response range of water injection during fracturing-flooding in Well X15 of BN1 block

图6 压驱微地震监测缝网规模及方位
Fig.6 Scale and orientation of microseismic monitoring networks during fracturing-flooding

图7 投产30 d后压驱生产情况
Fig.7 Production situation of fracturing-flooding after 30 d of production


免责声明:本文仅用于学术交流和传播,不构成投资建议

-------

参考资料:

[1]胡文瑞,魏漪,鲍敬伟.中国低渗透油气藏开发理论与技术进展[J].石油勘探与开发,2018,45(4):646-656.HU Wenrui,WEI Yi,BAO Jingwei. Development of the theory and technology for low permeability reservoirs in China[J].Petroleum Exploration and Development, 2018, 45(4):646-656.

[2]杨勇,张世明,曹小朋,等.胜利油田低渗透油藏压驱开发技术实践与认识[J].油气地质与采收率,2023,30(6):61-71.YANG Yong,ZHANG Shiming,CAO Xiaopeng,et al. Practice and understanding of pressure drive development technology for low-permeability reservoirs in Shengli Oilfield[J]. Petroleum Geology and Recovery Efficiency,2023,30(6):61-71.

[3]杨勇,王建,卜亚辉,等.胜利油田压驱开发技术实践与认识[J].油气地质与采收率,2023,30(3):87-93.YANG Yong,WANG Jian,BU Yahui,et al. Practice and understanding of pressure-driven development technology in Shengli Oilfield[J]. Petroleum Geology and Recovery Efficiency,2023,30(3):87-93.

[4]贾承造.中国石油工业上游发展面临的挑战与未来科技攻关方向[J].石油学报,2020,41(12):1445-1464.JIA Chengzao. Development challenges and future scientific and technological researches in China’s petroleum industry upstream[J]. Acta Petrolei Sinica,2020,41(12):1445-1464.

[5]郭建春,马莅,卢聪.中国致密油藏压裂驱油技术进展及发展方向[J].石油学报,2022,43(12):1788-1797.GUO Jianchun,MA Li,LU Cong. Progress and development directions of fracturing flooding technology for tight reservoirs in China[J]. Acta Petrolei Sinica,2022,43(12):1788-1797.

[6]崔传智,李怀亮,吴忠维,等.考虑压驱注水诱发裂缝影响的注水井压力分析[J].油气藏评价与开发,2023,13(5):686-694.CUI Chuanzhi,LI Huailiang,WU Zhongwei,et al. Analysis of pressures in water injection wells considering fracture influence induced by pressure-drive water injection[J]. Petroleum Reservoir Evaluation and Development,2023,13(5):686-694.

[7]蔡新明,黄艳梅,金忠康.江苏油田复杂断块低渗透油藏压驱研究与实践[J].复杂油气藏,2023,16(3):343-346.CAI Xinming,HUANG Yanmei,JIN Zhongkang. Research and practice of pressure flooding in low-permeability reservoirs of complex fault block in Jiangsu Oilfield[J]. Complex Hydrocarbon Reservoirs,2023,16(3):343-346.

[8]崔传智,王俊康,吴忠维,等.致密油藏压驱动态裂缝模型建立及应用[J].特种油气藏,2023,30(4):87-95.CUI Chuanzhi, WANG Junkang, WU Zhongwei, et al. Establishment and application of pressure drive dynamic fracture model for tight oil reservoirs[J]. Special Oil&Gas Reservoirs,2023,30(4):87-95.

[9]张莉.中国石化东部老油田提高采收率技术进展及攻关方向[J].石油与天然气地质,2022,43(3):717-723.ZHANG Li. Progress and research direction of EOR technology in eastern mature oilfields of Sinopec[J]. Oil&Gas Geology,2022,43(3):717-723.

[10]赵文景,王敬,钱其豪,等.非均质油藏水驱优势渗流通道演化规律[J].断块油气田,2023,30(5):847-857.ZHAO Wenjing, WANG Jing, QIAN Qihao, et al. Evolution law of dominant flow channels of water flooding in heterogeneous reservoir[J]. Fault-Block Oil&Gas Field, 2023, 30(5):847-857.

[11]万海乔,王盛,刘学良.低孔低渗稠油油藏注水增能效果影响因素[J].新疆石油地质,2023,44(3):347-351.WAN Haiqiao,WANG Sheng,LIU Xueliang. Factors influencing water injection effect in low porosity and low permeability heavy oil reservoirs[J]. Xinjiang Petroleum Geology, 2023,44(3):347-351.

[12]余海棠,邓雄伟,刘艳梅,等.致密油储层渗吸驱油用纳米流体研究[J].断块油气田,2022,29(5):604-608.YU Haitang,DENG Xiongwei,LIU Yanmei,et al. Research of nanofluids suitable for imbibition and oil displacement in tight oil reservoirs[J]. Fault-Block Oil&Gas Field,2022,29(5):604-608.

[13]韦世明,金衍,夏阳,等.自发渗吸对页岩油储层压裂后闷井的影响[J].石油钻采工艺,2023,45(6):756-765.WEI Shiming,JIN Yan,XIA Yang,et al. Influence of spontaneous imbibition on post-fracturing well soaking in shale oil reservoirs[J]. Oil Drilling&Production Technology, 2023,45(6):756-765.

[14]马跃,向卿谊,丁康乐.国内外油页岩工业发展现状[J].世界石油工业,2024,31(1):16-25.MA Yue, XIANG Qingyi, DING Kangle. Development of oil shale at home and abroad[J]. World Petroleum Industry,2024,31(1):16-25.

[15]朱海燕,焦子曦,刘惠民,等.济阳坳陷陆相页岩油气藏组合缝网高导流压裂关键技术[J].天然气工业,2023,43(11):120-130.ZHU Haiyan,JIAO Zixi,LIU Huimin,et al. A new high-conductivity combined network fracturing technology for continental shale oil and gas reservoirs in the Jiyang Depression[J]. Natural Gas Industry,2023,43(11):120-130.

[16]尹定.双重孔隙介质单井水锥数值模拟方法[J].石油勘探与开发,1981,8(1):68-79.YIN Ding. Numerical simulation method of single well water cone in dual porous media[J]. Petroleum Exploration and Development,1981,8(1):68-79.

[17]向阳.储集岩石的渗吸及其应用[J].新疆石油地质,1984,5(4):46-56.XIANG Yang. Imbibition of reservoir rock and its application[J]. Xinjiang Petroleum Geology,1984,5(4):46-56.

[18]计秉玉,陈剑,周锡生,等.裂缝性低渗透油层渗吸作用的数学模型[J].清华大学学报(自然科学版),2002,42(6):711-713,726.JI Bingyu, CHEN Jian, ZHOU Xisheng, et al. Mathematical model of imbibition in fractured low permeability reservoirs[J].Journal of Tsinghua University(Science and Technology),2002,42(6):711-713,726.

[19]王家禄,刘玉章,陈茂谦,等.低渗透油藏裂缝动态渗吸机理实验研究[J].石油勘探与开发,2009,36(1):86-90.WANG Jialu,LIU Yuzhang,CHEN Maoqian,et al. Experimental study on dynamic imbibition mechanism of low permeability reservoirs[J]. Petroleum Exploration and Development,2009,36(1):86-90.

[20]蔡建超,郭士礼,游利军,等.裂缝-孔隙型双重介质油藏渗吸机理的分形分析[J].物理学报,2013,62(1):220-224.CAI Jianchao,GUO Shili,YOU Lijun,et al. Fractal analysis of spontaneous imbibition mechanism in fractured-porous dual media reservoir[J]. Acta Physica Sinica,2013,62(1):220-224.

[21]李一朋,郑波,吴明江,等.吐哈油田特低渗砂砾岩稠油油藏压裂技术研究应用[J].石油地质与工程,2018,32(6):96-98.LI Yipeng,ZHENG Bo,WU Mingjiang,et al. Research and application of fracturing technique for extra-low permeability glutenite heavy oil reservoirs in Tuha Oilfield[J]. Petroleum Geology and Engineering,2018,32(6):96-98.

[22]李兴科,尹洪军,徐志涛,等.基于流管法的低渗透油藏水驱动态分析[J].水动力学研究与进展A辑,2017,32(6):704-711.LI Xingke,YIN Hongjun,XU Zhitao,et al. Analysis of water drive performance using streamtube method in low permeability reservoirs[J]. Chinese Journal of Hydrodynamics, 2017,32(6):704-711.

[23]修书志,贾元钊,张斌,等.巨厚低渗砂砾岩储层控缝高蓄能缝网压裂技术研究及应用[J].中外能源,2016,21(10):58-63.XIU Shuzhi,JIA Yuanzhao,ZHANG Bin,et al. Research and application of height control-energizing-network fracturing technology in extremely-thick low permeability glutenite reservoirs[J].Sino-Global Energy,2016,21(10):58-63.

[24]马玉娟.大庆长垣油田三类油层压裂驱油提高采收率技术及其应用[J].大庆石油地质与开发,2021,40(2):103-109.MA Yujuan. Application of fracturing-flooding EOR technique in TypeⅢoil reservoirs in Daqing Placanticline Oilfield[J].Petroleum Geology&Oilfield Development in Daqing, 2021,40(2):103-109.

[25]黄婷,苏良银,达引朋,等.超低渗透油藏水平井储能压裂机理研究与现场试验[J].石油钻探技术,2020,48(1):80-84.HUANG Ting,SU Liangyin,DA Yinpeng,et al. Research and field test on energy storage fracturing mechanism of horizontal wells in ultra-low permeability reservoirs[J]. Petroleum Drilling Techniques,2020,48(1):80-84.

[26]王锋.压驱工艺优化及现场应用[J].石化技术,2022,29(4):10-11.WANG Feng. Optimization of pressure drive technology and its field application[J]. Petrochemical Industry Technology,2022,29(4):10-11.

[27]林伯韬.疏松砂岩储层微压裂机理与应用技术研究[J].石油科学通报,2021,6(2):209-227.LIN Botao. Microfracturing mechanisms and techniques in unconsolidated sandstone formations[J]. Petroleum Science Bulletin,2021,6(2):209-227.

[28]申婷婷.浅层超稠油水平井微压裂扩容技术及应用[J].特种油气藏,2022,29(6):111-118.SHEN Tingting. Microfracturing-based expansion technology and application in shallow ultra-heavy oil horizontal wells[J].Special Oil&Gas Reservoirs,2022,29(6):111-118.

[29]齐梅,郑小武,尹秀玲,等.地层破裂状态下实施大排量污水回注技术研究[J].石油学报,2008,29(3):455-458.QI Mei,ZHENG Xiaowu,YIN Xiuling,et al. Study on re-injection technology of high volume produced water under formation fracturing condition[J]. Acta Petrolei Sinica,2008,29(3):455-458.

[30]杨凯,王新亮,陈旭,等.微压裂酸化复合解堵技术在渤海某油田的应用[J].海洋石油,2022,42(4):48-51.YANG Kai,WANG Xinliang,CHEN Xu,et al. Application of micro-fracturing and chelate acidizing compound technology in Bohai Oilfield[J]. Offshore Oil,2022,42(4):48-51.

[31]于馥玮,高振东,朱文浩,等.基于微流控模型的裂缝性储集层渗吸机理实验[J].石油勘探与开发,2021,48(5):1004-1013.YU Fuwei,GAO Zhendong,ZHU Wenhao,et al. Experimental research on imbibition mechanisms of fractured reservoirs by microfluidic chips[J]. Petroleum Exploration and Development,2021,48(5):1004-1013.

[32]杨正明,刘学伟,李海波,等.致密储集层渗吸影响因素分析与渗吸作用效果评价[J].石油勘探与开发,2019,46(4):739-745.YANG Zhengming, LIU Xuewei, LI Haibo, et al. Analysis on the influencing factors of imbibition and the effect evaluation of imbibition in tight reservoirs[J]. Petroleum Exploration and Development,2019,46(4):739-745.

[33]黄兴,窦亮彬,左雄娣,等.致密油藏裂缝动态渗吸排驱规律[J].石油学报,2021,42(7):924-935.HUANG Xing, DOU Liangbin, ZUO Xiongdi, et al. Dynamic imbibition and drainage laws of fractures in tight reservoirs[J].Acta Petrolei Sinica,2021,42(7):924-935.

[34]察鲁明,冯其红,王森,等.基于虚拟单元法及损伤模型压驱注水数值模拟方法[J].计算物理,2022,40(1):81-90.CHA Luming, FENG Qihong, WANG Sen, et al. Numerical simulation of fracture-flooding with virtual element method in a continuous damage model[J]. Chinese Journal of Computational Physics,2022,40(1):81-90.

[35] GUNN R M. Non-linear analysis of arch dams including an anisotropic damage mechanics based constitutive model for concrete[D]. Brighton:University of Brighton,1998.

[36]王嘉晨,张海江,赵立朋,等.基于地面微地震监测定位和成像的煤层气水力压裂效果评价研究[J].石油物探,2023,62(1):31-42.WANG Jiachen,ZHANG Haijiang,ZHAO Lipeng,et al. Evaluation of the coalbed methane hydraulic fracturing effect based on microseismic event locations and tomography results for surface microseismic monitoring[J]. Geophysical Prospecting for Petroleum,2023,62(1):31-42.

END

扫描左方二维码

邀您进行业千人大群

往期精彩

二氧化碳资源化利用研究进展

中国南海“双深双高”技术进展

纳米颗粒技术优化CO2地质封存

深层煤岩气二氧化碳泡沫压裂评价方法

二氧化碳捕集研究进展及在驱油中的应用

国内外PDC钻头新进展与发展趋势展望

中国海油在海域勘探取得重大进展

深层煤层气水平井安全钻井技术

中国油气工程技术装备智能化

超深特深油气井固井关键技术进展

中国煤系气形成分布、甜点评价与展望

中国煤层气水平井钻完井技术研究进展

深地塔科1井钻井设计关键技术

提高油气田采收率技术协同方法与应用

油田开发提高采收率新方法研究进展与展望

深部煤层气井压裂工艺研究及应用

超临界CO2脉动压裂-渗流耦合系统应用

深层碳酸盐岩储层酸压进展与展望

旋转齿PDC钻头研制及应用

PDC钻头钻井提速关键影响因素研究

氦气资源形成条件、成因与富集规律

PDC钻头研究现状与发展趋势

超深层油气勘探领域研究进展与关键问题

中国深部煤层气地质研究进展

深层煤岩气水平井钻井技术

超深特深油气井固井关键技术进展

深部煤层气井排采制度研究与实践


油气研究前瞻
聚焦全球油气领域的科技创新、政策解读、工业升级、资本运作等热点话题,致力于为油气领域的决策者、创新者、研究者与投资者提供高端咨询服务。我们密切关注油气行业的最新动态,分析能源战略、创新技术和产业布局的新进展,以助力行业的发展和升级。
 最新文章